The k-hop connected dominating set problem: approximation algorithms and hardness results
| Main Author: | |
|---|---|
| Publication Date: | 2017 |
| Format: | Doctoral thesis |
| Language: | eng |
| Source: | Biblioteca Digital de Teses e Dissertações da USP |
| Download full: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-27062017-101521/ |
Summary: | Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G, there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar- tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complex- ity of computing this graph parameter. On the positive side, we show an approximation algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms for the weighted version of the problem, one of them restricted to graphs with a poly- nomially bounded number of minimal separators. Finally, also for the weighted variant of the problem where k = 1, we discuss an integer linear programming formulation and conduct a polyhedral study of its associated polytope. |
| id |
USP_bb17cd7dc52c8ba5f16c4fd85465b1f5 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-27062017-101521 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
2721 |
| spelling |
The k-hop connected dominating set problem: approximation algorithms and hardness resultsO problema do conjunto dominante conexo com k-saltos: aproximação e complexidadeAlgoritmos de aproximaçãoApproximation algorithmsComplexidade computacionalComputational complexityConjunto dominante conexo de k-saltosInapproximability thresholdK-disruptive separatorK-hop connected dominating setLimiar de inaproximabilidadePoliedroPolyhedraSeparador k-disruptivo minimalLet G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G, there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar- tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complex- ity of computing this graph parameter. On the positive side, we show an approximation algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms for the weighted version of the problem, one of them restricted to graphs with a poly- nomially bounded number of minimal separators. Finally, also for the weighted variant of the problem where k = 1, we discuss an integer linear programming formulation and conduct a polyhedral study of its associated polytope.Seja G um grafo conexo e k um inteiro positivo. Um subconjunto D de vértices de G é um conjunto dominante conexo de k-saltos se o subgrafo de G induzido por D é conexo e se, para todo vértice v em G, existe um vértice u em D a uma distância não maior do que k de v. Estudamos neste trabalho o problema de se encontrar um conjunto dominante conexo de k-saltos com cardinalidade mínima (Mink-CDS). Provamos que Mink-CDS é NP-difícil em grafos planares bipartidos com grau máximo 4. Mostramos que Mink-CDS é APX-completo em grafos bipartidos com grau máximo 4. Apresentamos limiares de inaproximabilidade para Mink-CDS para grafos bipartidos e (1, 2)-split, sendo que um desses é expresso em função de um parâmetro independente da ordem do grafo. Também discutimos a complexidade computacional do problema de se computar tal parâmetro. No lado positivo, propomos um algoritmo de aproximação para Mink-CDS cuja razão de aproximação é melhor do que a que se conhecia para esse problema. Finalmente, quando k = 1, apresentamos dois novos algoritmos de aproximação para a versão do problema com pesos nos vértices, sendo que um deles restrito a classes de grafos com um número polinomial de separadores minimais. Além disso, discutimos uma formulação de programação linear inteira para essa versão do problema e provamos resultados poliédricos a respeito de algumas das desigualdades que constituem o politopo associado à formulação.Biblioteca Digitais de Teses e Dissertações da USPWakabayashi, YoshikoCoelho, Rafael Santos2017-06-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-27062017-101521/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-27062017-101521Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
The k-hop connected dominating set problem: approximation algorithms and hardness results O problema do conjunto dominante conexo com k-saltos: aproximação e complexidade |
| title |
The k-hop connected dominating set problem: approximation algorithms and hardness results |
| spellingShingle |
The k-hop connected dominating set problem: approximation algorithms and hardness results Coelho, Rafael Santos Algoritmos de aproximação Approximation algorithms Complexidade computacional Computational complexity Conjunto dominante conexo de k-saltos Inapproximability threshold K-disruptive separator K-hop connected dominating set Limiar de inaproximabilidade Poliedro Polyhedra Separador k-disruptivo minimal |
| title_short |
The k-hop connected dominating set problem: approximation algorithms and hardness results |
| title_full |
The k-hop connected dominating set problem: approximation algorithms and hardness results |
| title_fullStr |
The k-hop connected dominating set problem: approximation algorithms and hardness results |
| title_full_unstemmed |
The k-hop connected dominating set problem: approximation algorithms and hardness results |
| title_sort |
The k-hop connected dominating set problem: approximation algorithms and hardness results |
| author |
Coelho, Rafael Santos |
| author_facet |
Coelho, Rafael Santos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Wakabayashi, Yoshiko |
| dc.contributor.author.fl_str_mv |
Coelho, Rafael Santos |
| dc.subject.por.fl_str_mv |
Algoritmos de aproximação Approximation algorithms Complexidade computacional Computational complexity Conjunto dominante conexo de k-saltos Inapproximability threshold K-disruptive separator K-hop connected dominating set Limiar de inaproximabilidade Poliedro Polyhedra Separador k-disruptivo minimal |
| topic |
Algoritmos de aproximação Approximation algorithms Complexidade computacional Computational complexity Conjunto dominante conexo de k-saltos Inapproximability threshold K-disruptive separator K-hop connected dominating set Limiar de inaproximabilidade Poliedro Polyhedra Separador k-disruptivo minimal |
| description |
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G, there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar- tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complex- ity of computing this graph parameter. On the positive side, we show an approximation algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms for the weighted version of the problem, one of them restricted to graphs with a poly- nomially bounded number of minimal separators. Finally, also for the weighted variant of the problem where k = 1, we discuss an integer linear programming formulation and conduct a polyhedral study of its associated polytope. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-06-13 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-27062017-101521/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-27062017-101521/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1826319092074676224 |