Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2020 |
| Tipo de documento: | Tese |
| Idioma: | eng |
| Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
| Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11139/tde-12082020-153615/ |
Resumo: | Traditional animal breeding programs have considerably modified chicken production in Brazil. However, the intensive selection process over the years brought negative consequences in poultry production, such as increased of the abdominal fat deposition, resulting in difficulties in the industrial processing and depreciation of the final product. In recent years, technological advances in molecular genetics and bioinformatics fields have made genomic selection (GS), using molecular markers (Single Nucleotide Polymorphisms - SNP), and more recently the whole-genome sequencing (WGS), an important tool to increase the genetic gain in animal breeding, especially for complex traits and traits which are difficult to measure. The aims of this work were to estimate the genetic values and compare the genomic predictions using a high-density SNP panel (HD - 600K) and whole-genome sequencing (WGS) dataset through different marker densities. Organs (heart, liver, gizzard and lungs) and carcass (breast, thigh, drumstick) information of 2,000 animals derived from a TT broiler line belonging to the Animal Breeding Program from Embrapa Swine and Poultry were used in further analysis. Subsequently, genomic predictions were performed using pedigree- based BLUP (PBLUP), single-step genomic BLUP (ssGBLUP) and BayesC models using various densities of SNP and variants imputed from whole-genome sequence. Genomic predictions were better when the genomic information was added in the analyses. However, our results showed no benefit of using WGS data compared to HD array data when ssGBLUP or BayesC approaches were applied. Besides that, the use of array data with lower densities (~74.000 SNPs can provide significant results at a low cost. |
| id |
USP_ad03a97c27bff5978d399a31ee2df66a |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-12082020-153615 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
2721 |
| spelling |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chickenEnriquecimento de painéis de genotipagem para a seleção genômica de características especiais em frango de corteBroiler chickenFrango de corteGenomic breeding valueGenomic selectionSeleção genômicaSequenciamentoSequencingSNPSNPValor genético genômicoTraditional animal breeding programs have considerably modified chicken production in Brazil. However, the intensive selection process over the years brought negative consequences in poultry production, such as increased of the abdominal fat deposition, resulting in difficulties in the industrial processing and depreciation of the final product. In recent years, technological advances in molecular genetics and bioinformatics fields have made genomic selection (GS), using molecular markers (Single Nucleotide Polymorphisms - SNP), and more recently the whole-genome sequencing (WGS), an important tool to increase the genetic gain in animal breeding, especially for complex traits and traits which are difficult to measure. The aims of this work were to estimate the genetic values and compare the genomic predictions using a high-density SNP panel (HD - 600K) and whole-genome sequencing (WGS) dataset through different marker densities. Organs (heart, liver, gizzard and lungs) and carcass (breast, thigh, drumstick) information of 2,000 animals derived from a TT broiler line belonging to the Animal Breeding Program from Embrapa Swine and Poultry were used in further analysis. Subsequently, genomic predictions were performed using pedigree- based BLUP (PBLUP), single-step genomic BLUP (ssGBLUP) and BayesC models using various densities of SNP and variants imputed from whole-genome sequence. Genomic predictions were better when the genomic information was added in the analyses. However, our results showed no benefit of using WGS data compared to HD array data when ssGBLUP or BayesC approaches were applied. Besides that, the use of array data with lower densities (~74.000 SNPs can provide significant results at a low cost.O melhoramento genético modificou consideravelmente a produção de frango no Brasil e no mundo. No entanto, o intensivo processo de seleção ao longo dos anos trouxe consequências negativas em aves, como por exemplo, o aumento na deposição de gordura abdominal nos animais, resultando em dificuldades de processamento e depreciação do produto final. Nos últimos anos, os avanços tecnológicos nas áreas de genética molecular e bioinformática fizeram com que a seleção genômica (SG) com o uso de marcadores moleculares (Single Nucleotide Polymorphisms - SNP), e mais recentemente o sequenciamento completo do genoma (Whole-Genomic Sequencing- WGS), se tornasse uma importante ferramenta para aumentar o ganho genético no melhoramento animal, especialmente para características complexas e de difícil mensuração. Os objetivos deste trabalho foram estimar os valores genéticos e comparar as predições genômicas utilizando provenientes de um painel de SNP de alta densidade (HD - 600K) e de dados do sequenciamento completo do genoma (WGS), por meio de diferentes densidades de marcadores. Foram utilizadas informações de órgãos (coração, fígado, moela e pulmões) e carcaça (peito, coxa, sobrecoxa) de 2.000 aves provenientes da população referência TT pertencente ao Programa de Melhoramento Genético de Aves da EMBRAPA Suínos e Aves. Posteriormente, as predições genômicas foram realizadas utilizando os modelos PBLUP (Pedigree-Based BLUP), ssGBLUP (single-step Genomic BLUP) e BayesC em várias densidades de SNP e variantes imputadas a partir da sequência do genoma completo. As predições genômicas foram melhores quando as informações genômicas foram adicionadas nas análises. No entanto, nossos resultados não mostraram nenhum benefício no uso de dados WGS em comparação aos dados do HD quando as abordagens ssGBLUP ou BayesC foram aplicadas. Além disso, o uso de um painel de baixa densidade (~74.000 SNPs) pode fornecer resultados significativos a um baixo custo.Biblioteca Digitais de Teses e Dissertações da USPMourão, Gerson BarretoSalvian, Mayara2020-06-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11139/tde-12082020-153615/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-08-14T05:19:02Zoai:teses.usp.br:tde-12082020-153615Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-14T05:19:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken Enriquecimento de painéis de genotipagem para a seleção genômica de características especiais em frango de corte |
| title |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken |
| spellingShingle |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken Salvian, Mayara Broiler chicken Frango de corte Genomic breeding value Genomic selection Seleção genômica Sequenciamento Sequencing SNP SNP Valor genético genômico |
| title_short |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken |
| title_full |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken |
| title_fullStr |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken |
| title_full_unstemmed |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken |
| title_sort |
Enrichment of genotyping panels for the genomic selection of special traits in broiler chicken |
| author |
Salvian, Mayara |
| author_facet |
Salvian, Mayara |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Mourão, Gerson Barreto |
| dc.contributor.author.fl_str_mv |
Salvian, Mayara |
| dc.subject.por.fl_str_mv |
Broiler chicken Frango de corte Genomic breeding value Genomic selection Seleção genômica Sequenciamento Sequencing SNP SNP Valor genético genômico |
| topic |
Broiler chicken Frango de corte Genomic breeding value Genomic selection Seleção genômica Sequenciamento Sequencing SNP SNP Valor genético genômico |
| description |
Traditional animal breeding programs have considerably modified chicken production in Brazil. However, the intensive selection process over the years brought negative consequences in poultry production, such as increased of the abdominal fat deposition, resulting in difficulties in the industrial processing and depreciation of the final product. In recent years, technological advances in molecular genetics and bioinformatics fields have made genomic selection (GS), using molecular markers (Single Nucleotide Polymorphisms - SNP), and more recently the whole-genome sequencing (WGS), an important tool to increase the genetic gain in animal breeding, especially for complex traits and traits which are difficult to measure. The aims of this work were to estimate the genetic values and compare the genomic predictions using a high-density SNP panel (HD - 600K) and whole-genome sequencing (WGS) dataset through different marker densities. Organs (heart, liver, gizzard and lungs) and carcass (breast, thigh, drumstick) information of 2,000 animals derived from a TT broiler line belonging to the Animal Breeding Program from Embrapa Swine and Poultry were used in further analysis. Subsequently, genomic predictions were performed using pedigree- based BLUP (PBLUP), single-step genomic BLUP (ssGBLUP) and BayesC models using various densities of SNP and variants imputed from whole-genome sequence. Genomic predictions were better when the genomic information was added in the analyses. However, our results showed no benefit of using WGS data compared to HD array data when ssGBLUP or BayesC approaches were applied. Besides that, the use of array data with lower densities (~74.000 SNPs can provide significant results at a low cost. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-06-02 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11139/tde-12082020-153615/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11139/tde-12082020-153615/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1826318666390568960 |