Teoria de coincidência equivariante e números de Nielsen equivariantes
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 1996 |
| Tipo de documento: | Tese |
| Idioma: | por |
| Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
| Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-114757/ |
Resumo: | Este trabalho consiste de duas partes. Na primeira parte, desenvolvemos uma teoria de nielsen equivariante para coincidencia de g-aplicacoes. Consideramos g-aplicacoes f, h: 'V SETA M', definidas num subconjunto aberto invariante v de uma g-variedade conexa, fechada, orientavel, m, onde g e um grupo de lie compacto, a g-acao em v e, nao necessariamente livre, e tal que: a) a acao de g em m preserva orientacao, b) para cada tipo de isotropia ('H IND.I') de v, 'M POT.H IND.I' e orientavel, c) para cada tipo de isotropia ('H IND.I') de v, as w 'H IND.I' - aplicacoes 'f ind.H' IND.I', 'h ind.H' IND.I': 'v ind.H' IND.I'SETA'm pot.H ind.I' PRESERVAM AS DIMENSOES DAS COMPONENTES CONEXAS DE 'V IND.H' ind.I' E DE 'M POT.H' ind.I'. ESTUDAMOS, TAMBEM, A QUESTAO DE MINIMIZAR O NUMERO DE ORBITAS DE COINCIDENCIA. NA SEGUNDA PARTE, CONSIDERAMOS A SEGUINTE QUESTAO: SEJA F: 'x seta x' UMA G-APLICACAO DEFINIDA NUM G-ESPACO X, ONDE G E UM GRUPO FINITO, G-ACAO E LIVRE E X E UM ESPACO DE JIANG. SERA QUE TODA G-CLASSE DE PONTO FIXO DE F TEM O MESMO INDICE? PROVAMOS QUE: A) SE 'g=z ind.2' E 'ii ind.1' (x/g) e isomorfo ao grupo fundamental da garrafa de klein, entao a resposta e afirmativa, se x e o toro, entao a resposta e afirmativa para todo g finito |
| id |
USP_a3794ebe19c7f8270e8154a2b8aaeb07 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20220712-114757 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
2721 |
| spelling |
Teoria de coincidência equivariante e números de Nielsen equivariantesnot availableTeorias De HomologiaTopologia AlgébricaEste trabalho consiste de duas partes. Na primeira parte, desenvolvemos uma teoria de nielsen equivariante para coincidencia de g-aplicacoes. Consideramos g-aplicacoes f, h: 'V SETA M', definidas num subconjunto aberto invariante v de uma g-variedade conexa, fechada, orientavel, m, onde g e um grupo de lie compacto, a g-acao em v e, nao necessariamente livre, e tal que: a) a acao de g em m preserva orientacao, b) para cada tipo de isotropia ('H IND.I') de v, 'M POT.H IND.I' e orientavel, c) para cada tipo de isotropia ('H IND.I') de v, as w 'H IND.I' - aplicacoes 'f ind.H' IND.I', 'h ind.H' IND.I': 'v ind.H' IND.I'SETA'm pot.H ind.I' PRESERVAM AS DIMENSOES DAS COMPONENTES CONEXAS DE 'V IND.H' ind.I' E DE 'M POT.H' ind.I'. ESTUDAMOS, TAMBEM, A QUESTAO DE MINIMIZAR O NUMERO DE ORBITAS DE COINCIDENCIA. NA SEGUNDA PARTE, CONSIDERAMOS A SEGUINTE QUESTAO: SEJA F: 'x seta x' UMA G-APLICACAO DEFINIDA NUM G-ESPACO X, ONDE G E UM GRUPO FINITO, G-ACAO E LIVRE E X E UM ESPACO DE JIANG. SERA QUE TODA G-CLASSE DE PONTO FIXO DE F TEM O MESMO INDICE? PROVAMOS QUE: A) SE 'g=z ind.2' E 'ii ind.1' (x/g) e isomorfo ao grupo fundamental da garrafa de klein, entao a resposta e afirmativa, se x e o toro, entao a resposta e afirmativa para todo g finitonot availableBiblioteca Digitais de Teses e Dissertações da USPGonçalves, Daciberg LimaFagundes, Pedro Luiz1996-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-114757/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-07-13T18:17:52Zoai:teses.usp.br:tde-20220712-114757Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-13T18:17:52Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Teoria de coincidência equivariante e números de Nielsen equivariantes not available |
| title |
Teoria de coincidência equivariante e números de Nielsen equivariantes |
| spellingShingle |
Teoria de coincidência equivariante e números de Nielsen equivariantes Fagundes, Pedro Luiz Teorias De Homologia Topologia Algébrica |
| title_short |
Teoria de coincidência equivariante e números de Nielsen equivariantes |
| title_full |
Teoria de coincidência equivariante e números de Nielsen equivariantes |
| title_fullStr |
Teoria de coincidência equivariante e números de Nielsen equivariantes |
| title_full_unstemmed |
Teoria de coincidência equivariante e números de Nielsen equivariantes |
| title_sort |
Teoria de coincidência equivariante e números de Nielsen equivariantes |
| author |
Fagundes, Pedro Luiz |
| author_facet |
Fagundes, Pedro Luiz |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Gonçalves, Daciberg Lima |
| dc.contributor.author.fl_str_mv |
Fagundes, Pedro Luiz |
| dc.subject.por.fl_str_mv |
Teorias De Homologia Topologia Algébrica |
| topic |
Teorias De Homologia Topologia Algébrica |
| description |
Este trabalho consiste de duas partes. Na primeira parte, desenvolvemos uma teoria de nielsen equivariante para coincidencia de g-aplicacoes. Consideramos g-aplicacoes f, h: 'V SETA M', definidas num subconjunto aberto invariante v de uma g-variedade conexa, fechada, orientavel, m, onde g e um grupo de lie compacto, a g-acao em v e, nao necessariamente livre, e tal que: a) a acao de g em m preserva orientacao, b) para cada tipo de isotropia ('H IND.I') de v, 'M POT.H IND.I' e orientavel, c) para cada tipo de isotropia ('H IND.I') de v, as w 'H IND.I' - aplicacoes 'f ind.H' IND.I', 'h ind.H' IND.I': 'v ind.H' IND.I'SETA'm pot.H ind.I' PRESERVAM AS DIMENSOES DAS COMPONENTES CONEXAS DE 'V IND.H' ind.I' E DE 'M POT.H' ind.I'. ESTUDAMOS, TAMBEM, A QUESTAO DE MINIMIZAR O NUMERO DE ORBITAS DE COINCIDENCIA. NA SEGUNDA PARTE, CONSIDERAMOS A SEGUINTE QUESTAO: SEJA F: 'x seta x' UMA G-APLICACAO DEFINIDA NUM G-ESPACO X, ONDE G E UM GRUPO FINITO, G-ACAO E LIVRE E X E UM ESPACO DE JIANG. SERA QUE TODA G-CLASSE DE PONTO FIXO DE F TEM O MESMO INDICE? PROVAMOS QUE: A) SE 'g=z ind.2' E 'ii ind.1' (x/g) e isomorfo ao grupo fundamental da garrafa de klein, entao a resposta e afirmativa, se x e o toro, entao a resposta e afirmativa para todo g finito |
| publishDate |
1996 |
| dc.date.none.fl_str_mv |
1996-08-30 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-114757/ |
| url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-114757/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1826318892666978304 |