Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos

Detalhes bibliográficos
Autor(a) principal: Caixeta Júnior, Paulo Roberto
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18148/tde-28092011-103532/
Resumo: A Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto.
id USP_8bf92d1ef15edb8feb17f196c2eb76a5
oai_identifier_str oai:teses.usp.br:tde-28092011-103532
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelosMultidisciplinary design optimization of flexible wings using metamodelsAeroelasticidadeAeroelasticityAlgoritmos genéticos multi-objetivoFinite element methodFlutterFlutterFunções de base radialMetamodelagemMetamodelingMétodo dos elementos finitosMultidisciplinary design optimization (MDO)Multiobjective genetic algorithmsNeural networksOtimização multidisciplinar em Projeto (MDO)Radial basis functionsRedes neuraisA Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto.The Multidisciplinary Design Optimization, MDO, is an important and versatile design tool and its use is spreading out in several fields of engineering. The focus of this methodology is to put together disciplines involved with the design to work all their variables concomitantly, at an optimization environment to obtain better solutions. It is possible to use MDO in any stage of the design process, that is in the conceptual, preliminary or detailed design, as long as the numerical models are fitted to the needs of each of these stages. This work describes the development of a MDO code for the conceptual design of flexible aircraft wings, with restrictions regarding the phenomenon called flutter. As a tool for the designer at the conceptual stage, the numerical models must be fairly accurate and fast. The aim of this study is to analyze the use of metamodels for the flutter prediction of aircraft wings in the MDO code, instead of a conventional model itself, what may affect significantly the computational cost of the optimization. For this purpose, three different metamodeling techniques have been evaluated, representing two basic metamodel classes, that are, the interpolation and the approximation class. These classes are represented by the radial basis function interpolation method and the artificial neural networks method, respectively. The third method, which is considered as a hybrid of the other two, is called radial basis function neural networks and is an attempt of coupling the features of both in single code. Metamodels are prepared using an aeroelastic code based on finite element model coupled with linear aerodynamics. Results of the three metamodels performance are presented, from where one can note that the artificial neural network is best suited for flutter prediction. The MDO process is achieved using a non-dominance based multi-objective genetic algorithm, whose objectives are the maximization of critical flutter speed and minimization of structural mass. Two case studies are presented to evaluate the performance of the MDO code, revealing that overall optimization process actually performs the search for the Pareto frontier.Biblioteca Digitais de Teses e Dissertações da USPMarques, Flávio DonizetiCaixeta Júnior, Paulo Roberto2011-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18148/tde-28092011-103532/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-28092011-103532Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos
Multidisciplinary design optimization of flexible wings using metamodels
title Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos
spellingShingle Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos
Caixeta Júnior, Paulo Roberto
Aeroelasticidade
Aeroelasticity
Algoritmos genéticos multi-objetivo
Finite element method
Flutter
Flutter
Funções de base radial
Metamodelagem
Metamodeling
Método dos elementos finitos
Multidisciplinary design optimization (MDO)
Multiobjective genetic algorithms
Neural networks
Otimização multidisciplinar em Projeto (MDO)
Radial basis functions
Redes neurais
title_short Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos
title_full Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos
title_fullStr Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos
title_full_unstemmed Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos
title_sort Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos
author Caixeta Júnior, Paulo Roberto
author_facet Caixeta Júnior, Paulo Roberto
author_role author
dc.contributor.none.fl_str_mv Marques, Flávio Donizeti
dc.contributor.author.fl_str_mv Caixeta Júnior, Paulo Roberto
dc.subject.por.fl_str_mv Aeroelasticidade
Aeroelasticity
Algoritmos genéticos multi-objetivo
Finite element method
Flutter
Flutter
Funções de base radial
Metamodelagem
Metamodeling
Método dos elementos finitos
Multidisciplinary design optimization (MDO)
Multiobjective genetic algorithms
Neural networks
Otimização multidisciplinar em Projeto (MDO)
Radial basis functions
Redes neurais
topic Aeroelasticidade
Aeroelasticity
Algoritmos genéticos multi-objetivo
Finite element method
Flutter
Flutter
Funções de base radial
Metamodelagem
Metamodeling
Método dos elementos finitos
Multidisciplinary design optimization (MDO)
Multiobjective genetic algorithms
Neural networks
Otimização multidisciplinar em Projeto (MDO)
Radial basis functions
Redes neurais
description A Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto.
publishDate 2011
dc.date.none.fl_str_mv 2011-08-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18148/tde-28092011-103532/
url http://www.teses.usp.br/teses/disponiveis/18/18148/tde-28092011-103532/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826319125149908992