Folheações transversalmente projetivas
| Main Author: | |
|---|---|
| Publication Date: | 1998 |
| Format: | Doctoral thesis |
| Language: | por |
| Source: | Biblioteca Digital de Teses e Dissertações da USP |
| Download full: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-015902/ |
Summary: | Estudamos as folheações transversalmente projetivas, denotadas por (M,F), sobre o ponto de vista da geometria transversa. Este tipo de folheaçào é interessante pois inclui as folheações afins e riemannianas. Um modelo para tais folheações é dado pela projeção 'P POT.q'(R) x R 'SETA'P POT.q'(R), onde 'P POT.q'(R) é o espaço projetivo real de dimensão q. Introduzimos a álgebra de Lie 'ANTIIND 'delta' 'CONTÉM' (M,F) das transformações projetivas infinitesimais transversas, a qual possui dimensão '< OU =' 'q POT.2' + 2q, onde q = codim(M,F) e conseguimos alguns resultados globais. Provamos por exemplo, que se dim'delta'CONTÉM' (M,F) = 'q POT.2' + 2q então (M,F) é rasa, que se (M,F) é uma folheaçào transversalmente projetiva completa, toda transformação projetiva infinitesimal transversa é completa e que se a folheação levantada no fibrado dos 2-referenciais transversos de (M,F) não possui funções básicas diferentes das constantes, então todas as folhas de (M,F) são densas em M |
| id |
USP_6bc70a2cd550689d0d19a5b16725d6fe |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20210729-015902 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
2721 |
| spelling |
Folheações transversalmente projetivasnot availableGeometria DiferencialEstudamos as folheações transversalmente projetivas, denotadas por (M,F), sobre o ponto de vista da geometria transversa. Este tipo de folheaçào é interessante pois inclui as folheações afins e riemannianas. Um modelo para tais folheações é dado pela projeção 'P POT.q'(R) x R 'SETA'P POT.q'(R), onde 'P POT.q'(R) é o espaço projetivo real de dimensão q. Introduzimos a álgebra de Lie 'ANTIIND 'delta' 'CONTÉM' (M,F) das transformações projetivas infinitesimais transversas, a qual possui dimensão '< OU =' 'q POT.2' + 2q, onde q = codim(M,F) e conseguimos alguns resultados globais. Provamos por exemplo, que se dim'delta'CONTÉM' (M,F) = 'q POT.2' + 2q então (M,F) é rasa, que se (M,F) é uma folheaçào transversalmente projetiva completa, toda transformação projetiva infinitesimal transversa é completa e que se a folheação levantada no fibrado dos 2-referenciais transversos de (M,F) não possui funções básicas diferentes das constantes, então todas as folhas de (M,F) são densas em Mnot availableBiblioteca Digitais de Teses e Dissertações da USPAlmeida, Francisco Rui Tavares deBarros, Maxwell Mariano de1998-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-015902/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:00:02Zoai:teses.usp.br:tde-20210729-015902Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:00:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Folheações transversalmente projetivas not available |
| title |
Folheações transversalmente projetivas |
| spellingShingle |
Folheações transversalmente projetivas Barros, Maxwell Mariano de Geometria Diferencial |
| title_short |
Folheações transversalmente projetivas |
| title_full |
Folheações transversalmente projetivas |
| title_fullStr |
Folheações transversalmente projetivas |
| title_full_unstemmed |
Folheações transversalmente projetivas |
| title_sort |
Folheações transversalmente projetivas |
| author |
Barros, Maxwell Mariano de |
| author_facet |
Barros, Maxwell Mariano de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Almeida, Francisco Rui Tavares de |
| dc.contributor.author.fl_str_mv |
Barros, Maxwell Mariano de |
| dc.subject.por.fl_str_mv |
Geometria Diferencial |
| topic |
Geometria Diferencial |
| description |
Estudamos as folheações transversalmente projetivas, denotadas por (M,F), sobre o ponto de vista da geometria transversa. Este tipo de folheaçào é interessante pois inclui as folheações afins e riemannianas. Um modelo para tais folheações é dado pela projeção 'P POT.q'(R) x R 'SETA'P POT.q'(R), onde 'P POT.q'(R) é o espaço projetivo real de dimensão q. Introduzimos a álgebra de Lie 'ANTIIND 'delta' 'CONTÉM' (M,F) das transformações projetivas infinitesimais transversas, a qual possui dimensão '< OU =' 'q POT.2' + 2q, onde q = codim(M,F) e conseguimos alguns resultados globais. Provamos por exemplo, que se dim'delta'CONTÉM' (M,F) = 'q POT.2' + 2q então (M,F) é rasa, que se (M,F) é uma folheaçào transversalmente projetiva completa, toda transformação projetiva infinitesimal transversa é completa e que se a folheação levantada no fibrado dos 2-referenciais transversos de (M,F) não possui funções básicas diferentes das constantes, então todas as folhas de (M,F) são densas em M |
| publishDate |
1998 |
| dc.date.none.fl_str_mv |
1998-06-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-015902/ |
| url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-015902/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1826318883236085760 |