Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success

Bibliographic Details
Main Author: Nishisaka, Caroline Sayuri
Publication Date: 2025
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: https://www.teses.usp.br/teses/disponiveis/11/11138/tde-03062025-160814/
Summary: Soil microbiome is vital for plant health, influencing nutrient cycling, growth promotion, and disease suppression. The rhizosphere, where plant roots interact with soil microorganisms, plays a crucial role in this process. Microorganisms in this region can promote plant growth, protect against pathogens, and enhance plant resilience. The effectiveness of microbial inoculants in the rhizosphere is influenced by soil microbial diversity, as soils with low diversity may facilitate inoculant establishment, while high diversity can create competitive barriers. Plus, understanding the role of microbial genes, such as EPS and TasA from Bacillus subtilis strain UD1022, in biofilm formation and microbial recruitment is key to optimizing biocontrol strategies. The objectives of this study were to investigate the effect of soil microbial diversity on the bioinoculant establishment, assess the impact of Pseudomonas inefficax strain CMAA1741 on plant growth and disease suppression, characterize bacterial genomes for plant growth promotion and biocontrol genes mining, and explore the role of EPS and TasA genes in Bacillus subtilis colonization. The researchers employed a dilution-to-extinction method to create soil microbial diversity gradients, ranging from natural soil to fully autoclaved soil, for the assessment of disease severity, plant growth, and microbiome composition. Genomic sequencing was used to characterize the genomes of the interested rhizosphere bacteria Pseudomonas inefficax strain CMAA1741, isolated from wheat landraces. Additionally, the role of exo-polymeric genes, EPS and TasA, in Bacillus subtilis strain UD1022 was analyzed using mutant models to evaluate their effect on microbiome assembly. Inoculation with Pseudomonas inefficax strain CMAA1741 significantly reduced disease severity caused by Bipolaris sorokiniana, particularly in low-diversity soils. Furthermore, Bacillus subtilis exo-polymeric genes, particularly EPS and TasA, were found to be critical for rhizosphere colonization and the assembly of beneficial microbial communities. Inoculation with wild-type Bacillus subtilis strain UD1022 led to more pronounced effects on microbial community structure in soils with lower microbial diversity. The findings highlight the significant role of microbial diversity and functional traits in enhancing biocontrol efficacy, promoting plant growth, and shaping rhizosphere microbiome. The research emphasizes the potential of using microbial interactions and functional genes to develop sustainable, microbiome-based strategies for improving crop productivity, pathogen management, and resilience in agricultural systems.
id USP_2c6e60fe05264da630e2861b58e5bcfa
oai_identifier_str oai:teses.usp.br:tde-03062025-160814
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol successInfluência da diversidade do microbioma da rizosfera na dinâmica de patógenos de plantas e no sucesso do biocontroleBioinoculantBioinoculanteDiluição para extinçãoDilution-to-extinctionDisease suppressivenessEPS/TasAEPS/TasAGenomaGenomeRhizosphereRizosferaSupressão de doençasSoil microbiome is vital for plant health, influencing nutrient cycling, growth promotion, and disease suppression. The rhizosphere, where plant roots interact with soil microorganisms, plays a crucial role in this process. Microorganisms in this region can promote plant growth, protect against pathogens, and enhance plant resilience. The effectiveness of microbial inoculants in the rhizosphere is influenced by soil microbial diversity, as soils with low diversity may facilitate inoculant establishment, while high diversity can create competitive barriers. Plus, understanding the role of microbial genes, such as EPS and TasA from Bacillus subtilis strain UD1022, in biofilm formation and microbial recruitment is key to optimizing biocontrol strategies. The objectives of this study were to investigate the effect of soil microbial diversity on the bioinoculant establishment, assess the impact of Pseudomonas inefficax strain CMAA1741 on plant growth and disease suppression, characterize bacterial genomes for plant growth promotion and biocontrol genes mining, and explore the role of EPS and TasA genes in Bacillus subtilis colonization. The researchers employed a dilution-to-extinction method to create soil microbial diversity gradients, ranging from natural soil to fully autoclaved soil, for the assessment of disease severity, plant growth, and microbiome composition. Genomic sequencing was used to characterize the genomes of the interested rhizosphere bacteria Pseudomonas inefficax strain CMAA1741, isolated from wheat landraces. Additionally, the role of exo-polymeric genes, EPS and TasA, in Bacillus subtilis strain UD1022 was analyzed using mutant models to evaluate their effect on microbiome assembly. Inoculation with Pseudomonas inefficax strain CMAA1741 significantly reduced disease severity caused by Bipolaris sorokiniana, particularly in low-diversity soils. Furthermore, Bacillus subtilis exo-polymeric genes, particularly EPS and TasA, were found to be critical for rhizosphere colonization and the assembly of beneficial microbial communities. Inoculation with wild-type Bacillus subtilis strain UD1022 led to more pronounced effects on microbial community structure in soils with lower microbial diversity. The findings highlight the significant role of microbial diversity and functional traits in enhancing biocontrol efficacy, promoting plant growth, and shaping rhizosphere microbiome. The research emphasizes the potential of using microbial interactions and functional genes to develop sustainable, microbiome-based strategies for improving crop productivity, pathogen management, and resilience in agricultural systems.O microbioma do solo é vital para a saúde das plantas, influenciando o ciclo de nutrientes, a promoção do crescimento e a supressão de doenças. A rizosfera, onde as raízes das plantas interagem com os microrganismos do solo, desempenha um papel crucial nesse processo. Microorganismos nesta região podem promover o crescimento das plantas, proteger contra patógenos e aumentar a resiliência das plantas. A eficácia dos bioinoculantes na rizosfera é influenciada pela diversidade microbiana do solo, já que solos com baixa diversidade podem facilitar o estabelecimento do inoculante, enquanto alta diversidade pode criar barreiras competitivas. Além disso, entender o papel dos genes microbianos, como EPS e TasA de Bacillus subtilis cepa UD1022, na formação de biofilmes e no recrutamento microbiano é fundamental para otimizar as estratégias de biocontrole. Os objetivos deste estudo foram investigar o efeito da diversidade microbiana do solo no estabelecimento de bioinoculantes, avaliar o impacto da cepa Pseudomonas inefficax cepa CMAA1741 no crescimento das plantas e na supressão de doenças, caracterizar os genomas bacterianos para promoção do crescimento de plantas e pesquisa de genes de biocontrole, e explorar o papel dos genes EPS e TasA na colonização de Bacillus subtilis. A pesquisa utilizou o método de diluição para extinção para criar gradientes de diversidade microbiana do solo, variando de solo natural a solo completamente autoclavado, para avaliar a severidade da doença, o crescimento das plantas e a composição do microbioma. O sequenciamento genômico foi usado para caracterizar os genomas das bactérias da rizosfera de interesse, Pseudomonas inefficax cepa CMAA1741, isoladas de cultivares de trigo. Além disso, o papel dos genes exo-poliméricos, EPS e TasA, em Bacillus subtilis cepa UD1022 foi analisado utilizando modelos mutantes para avaliar seu efeito na montagem do microbioma. A inoculação com a cepa Pseudomonas inefficax cepa CMAA1741 reduziu significativamente a severidade da doença causada por Bipolaris sorokiniana, particularmente em solos de baixa diversidade. Além disso, os genes exopoliméricos de Bacillus subtilis cepa UD1022, especialmente EPS e TasA, foram encontrados como cruciais para a colonização da rizosfera e a formação de comunidades microbianas benéficas. A inoculação com o tipo selvagem de Bacillus subtilis cepa UD1022 resultou em efeitos mais pronunciados na estrutura da comunidade microbiana em solos com menor diversidade microbiana. Os resultados destacam o papel significativo da diversidade microbiana e das características funcionais no aumento da eficácia do biocontrole, na promoção do crescimento das plantas e na formação do microbioma da rizosfera. A pesquisa enfatiza o potencial do uso de interações microbianas e genes funcionais para desenvolver estratégias sustentáveis, baseadas no microbioma, para melhorar a produtividade das culturas, o manejo de patógenos e a resiliência nos sistemas agrícolas.Biblioteca Digitais de Teses e Dissertações da USPMendes, RodrigoNishisaka, Caroline Sayuri2025-03-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11138/tde-03062025-160814/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-06-05T19:27:02Zoai:teses.usp.br:tde-03062025-160814Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-06-05T19:27:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success
Influência da diversidade do microbioma da rizosfera na dinâmica de patógenos de plantas e no sucesso do biocontrole
title Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success
spellingShingle Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success
Nishisaka, Caroline Sayuri
Bioinoculant
Bioinoculante
Diluição para extinção
Dilution-to-extinction
Disease suppressiveness
EPS/TasA
EPS/TasA
Genoma
Genome
Rhizosphere
Rizosfera
Supressão de doenças
title_short Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success
title_full Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success
title_fullStr Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success
title_full_unstemmed Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success
title_sort Influence of rhizosphere microbiome diversity on plant pathogen dynamics and biocontrol success
author Nishisaka, Caroline Sayuri
author_facet Nishisaka, Caroline Sayuri
author_role author
dc.contributor.none.fl_str_mv Mendes, Rodrigo
dc.contributor.author.fl_str_mv Nishisaka, Caroline Sayuri
dc.subject.por.fl_str_mv Bioinoculant
Bioinoculante
Diluição para extinção
Dilution-to-extinction
Disease suppressiveness
EPS/TasA
EPS/TasA
Genoma
Genome
Rhizosphere
Rizosfera
Supressão de doenças
topic Bioinoculant
Bioinoculante
Diluição para extinção
Dilution-to-extinction
Disease suppressiveness
EPS/TasA
EPS/TasA
Genoma
Genome
Rhizosphere
Rizosfera
Supressão de doenças
description Soil microbiome is vital for plant health, influencing nutrient cycling, growth promotion, and disease suppression. The rhizosphere, where plant roots interact with soil microorganisms, plays a crucial role in this process. Microorganisms in this region can promote plant growth, protect against pathogens, and enhance plant resilience. The effectiveness of microbial inoculants in the rhizosphere is influenced by soil microbial diversity, as soils with low diversity may facilitate inoculant establishment, while high diversity can create competitive barriers. Plus, understanding the role of microbial genes, such as EPS and TasA from Bacillus subtilis strain UD1022, in biofilm formation and microbial recruitment is key to optimizing biocontrol strategies. The objectives of this study were to investigate the effect of soil microbial diversity on the bioinoculant establishment, assess the impact of Pseudomonas inefficax strain CMAA1741 on plant growth and disease suppression, characterize bacterial genomes for plant growth promotion and biocontrol genes mining, and explore the role of EPS and TasA genes in Bacillus subtilis colonization. The researchers employed a dilution-to-extinction method to create soil microbial diversity gradients, ranging from natural soil to fully autoclaved soil, for the assessment of disease severity, plant growth, and microbiome composition. Genomic sequencing was used to characterize the genomes of the interested rhizosphere bacteria Pseudomonas inefficax strain CMAA1741, isolated from wheat landraces. Additionally, the role of exo-polymeric genes, EPS and TasA, in Bacillus subtilis strain UD1022 was analyzed using mutant models to evaluate their effect on microbiome assembly. Inoculation with Pseudomonas inefficax strain CMAA1741 significantly reduced disease severity caused by Bipolaris sorokiniana, particularly in low-diversity soils. Furthermore, Bacillus subtilis exo-polymeric genes, particularly EPS and TasA, were found to be critical for rhizosphere colonization and the assembly of beneficial microbial communities. Inoculation with wild-type Bacillus subtilis strain UD1022 led to more pronounced effects on microbial community structure in soils with lower microbial diversity. The findings highlight the significant role of microbial diversity and functional traits in enhancing biocontrol efficacy, promoting plant growth, and shaping rhizosphere microbiome. The research emphasizes the potential of using microbial interactions and functional genes to develop sustainable, microbiome-based strategies for improving crop productivity, pathogen management, and resilience in agricultural systems.
publishDate 2025
dc.date.none.fl_str_mv 2025-03-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11138/tde-03062025-160814/
url https://www.teses.usp.br/teses/disponiveis/11/11138/tde-03062025-160814/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839001849102336