Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems
Main Author: | |
---|---|
Publication Date: | 2021 |
Format: | Doctoral thesis |
Language: | eng |
Source: | Biblioteca Digital de Teses e Dissertações da USP |
Download full: | https://www.teses.usp.br/teses/disponiveis/18/18154/tde-24022021-165858/ |
Summary: | Modern power distribution systems have posed new challenges to Volt/VAr control strategies due to the increasing penetration of distributed generation (DG) units. But, with the advent of smart grid technologies, these systems have also provided remarkable opportunities for the development of new optimization and energy saving techniques. In this context, this thesis presents a new specialized evolutionary system for Volt/VAr optimization (SES-VVO) to efficiently solve the multi-objective optimization problem (MOP) when the number of tap-changing operations of voltage regulating devices is considered together with the conservation voltage reduction (CVR) goals. This problem is a challenging task for evolutionary algorithms (EAs) in terms of meeting voltage limits constraints and reaching near optimal solutions. Specialized search mechanisms were developed to improve the overall performance of the day-ahead operation planning and the hourly decision-making approaches, giving more realistic and cost saving solutions for distribution systems\' operators. The SES-VVO also corroborated with the development of an advanced strategy that has potential for real-time operation considering the stochastic behavior of load/DG variables. Further results demonstrated that the tap change costs have a decisive impact on the economics of VVO-based CVR. Additionally, this thesis investigates and proposes a novel robust framework – constituted by parameters and metrics – to quantitatively estimate how robust is a VVO solution when facing the stochastic nature of load/DG uncertainties. The analysis demonstrated that the VVO solutions designed to specifically search for CVR goals, both in energy and cost savings, are sensitive to these uncertainties, leading to violation of voltage standards. So, as the integration of DG is evermore increasing in distribution systems, uncertainty realizations can lead to poor voltage quality in non-robust VVO designs. To tackle this problem, the proposed parameters/metrics were incorporated into the VVO-based CVR via MOP. Thus, a balance between performance and robustness could be achieved through trade-off solutions, followed by a decision-making based on the used-preferred level of robustness. The results showed that at the expense of a small amount of energy and operating cost, greater robustness can be obtained to face the uncertainties. In summary, the proposed methods in this thesis are promising for smart grid applications, being capable of finding robust and cost-effective CVR solutions on a real-time scale. |
id |
USP_2b01f0f3fc014bf6d4c1a43f858c3752 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24022021-165858 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systemsAlgoritmos evolutivos eficientes para o controle Volt/Var robusto em sistemas modernos de distribuição de energia elétricaConservation voltage reductionControle Volt/VArDistributed generationDistribution systemsEvolutionary multi-objective optimizationGeração distribuídaOtimização evolutiva multiobjetivoProjeto robustoRedução de tensão conservativaRobust designSistemas de distribuiçãoVolt/VAr controlModern power distribution systems have posed new challenges to Volt/VAr control strategies due to the increasing penetration of distributed generation (DG) units. But, with the advent of smart grid technologies, these systems have also provided remarkable opportunities for the development of new optimization and energy saving techniques. In this context, this thesis presents a new specialized evolutionary system for Volt/VAr optimization (SES-VVO) to efficiently solve the multi-objective optimization problem (MOP) when the number of tap-changing operations of voltage regulating devices is considered together with the conservation voltage reduction (CVR) goals. This problem is a challenging task for evolutionary algorithms (EAs) in terms of meeting voltage limits constraints and reaching near optimal solutions. Specialized search mechanisms were developed to improve the overall performance of the day-ahead operation planning and the hourly decision-making approaches, giving more realistic and cost saving solutions for distribution systems\' operators. The SES-VVO also corroborated with the development of an advanced strategy that has potential for real-time operation considering the stochastic behavior of load/DG variables. Further results demonstrated that the tap change costs have a decisive impact on the economics of VVO-based CVR. Additionally, this thesis investigates and proposes a novel robust framework – constituted by parameters and metrics – to quantitatively estimate how robust is a VVO solution when facing the stochastic nature of load/DG uncertainties. The analysis demonstrated that the VVO solutions designed to specifically search for CVR goals, both in energy and cost savings, are sensitive to these uncertainties, leading to violation of voltage standards. So, as the integration of DG is evermore increasing in distribution systems, uncertainty realizations can lead to poor voltage quality in non-robust VVO designs. To tackle this problem, the proposed parameters/metrics were incorporated into the VVO-based CVR via MOP. Thus, a balance between performance and robustness could be achieved through trade-off solutions, followed by a decision-making based on the used-preferred level of robustness. The results showed that at the expense of a small amount of energy and operating cost, greater robustness can be obtained to face the uncertainties. In summary, the proposed methods in this thesis are promising for smart grid applications, being capable of finding robust and cost-effective CVR solutions on a real-time scale.Os modernos sistemas de distribuição de energia elétrica têm imposto novos desafios às estratégias de controle Volt/VAr devido à crescente penetração de unidades de geração distribuída (DG). Com o advento das tecnologias de rede inteligentes, esses sistemas também têm proporcionado oportunidades notáveis para o desenvolvimento de novas técnicas de otimização e economia de energia. Neste contexto, esta tese apresenta um novo sistema evolutivo especializado em otimização Volt/VAr (SES-VVO) para resolver eficientemente o problema de otimização multiobjetivo (MOP) quando o número de operações de comutação dos dispositivos reguladores de tensão é considerado em conjunto com os objetivos da redução da tensão de conservação (CVR). Este problema é uma tarefa desafiadora para os algoritmos evolutivos (EAs) em termos de atendimento às restrições de limites de tensão e obtenção de soluções quase ótimas. Mecanismos de busca especializados foram desenvolvidos para melhorar o desempenho geral do planejamento da operação do dia seguinte e das abordagens de tomada de decisão a cada hora, fornecendo soluções mais realistas e econômicas para os operadores dos sistemas de distribuição. O SES-VVO também corroborou com o desenvolvimento de uma estratégia avançada que tem potencial para operação em tempo real considerando o comportamento estocástico das variáveis de carga e DG. Resultados adicionais também demonstraram que os custos de comutação têm um impacto decisivo na parte econômica do CVR baseado em otimização Volt/VAr. Além disso, esta tese propõe um novo arcabouço conceitual de robustez – constituído por parâmetros e métricas – para estimar quantitativamente o quão robusta é uma solução VVO quando enfrenta a natureza estocástica das incertezas de carga e DG. A análise demonstrou que as soluções VVO projetadas para buscar especificamente os objetivos do CVR, tanto em termos de economia de energia quanto de custos, são sensíveis a essas incertezas, levando à violação das restrições de tensão. Portanto, como a integração de DG está aumentando cada vez mais nos sistemas de distribuição, as incertezas podem levar à baixa qualidade da tensão em projetos não robustos de VVO. Para resolver este problema, os parâmetros e métricas de robustez foram incorporados à estratégia de CVR, e modelados como um problema de otimização multiobjetivo. Assim, um equilíbrio entre desempenho e robustez pôde ser alcançado por meio de soluções de compromisso (tradeoff), seguido por uma tomada de decisão com base no nível de robustez especificado. Os resultados demostraram que às custas de uma pequena quantidade de energia e custo operacional, pode-se obter maior robustez para enfrentar as incertezas. Em resumo, os métodos propostos nesta tese são promissores para aplicações em redes inteligentes, sendo capazes de encontrar soluções CVR robustas e econômicas em escala de tempo real.Biblioteca Digitais de Teses e Dissertações da USPJúnior, José Carlos de Melo VieiraVitor, Tiago Soares2021-01-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18154/tde-24022021-165858/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-06-29T21:52:02Zoai:teses.usp.br:tde-24022021-165858Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-29T21:52:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems Algoritmos evolutivos eficientes para o controle Volt/Var robusto em sistemas modernos de distribuição de energia elétrica |
title |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems |
spellingShingle |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems Vitor, Tiago Soares Conservation voltage reduction Controle Volt/VAr Distributed generation Distribution systems Evolutionary multi-objective optimization Geração distribuída Otimização evolutiva multiobjetivo Projeto robusto Redução de tensão conservativa Robust design Sistemas de distribuição Volt/VAr control |
title_short |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems |
title_full |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems |
title_fullStr |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems |
title_full_unstemmed |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems |
title_sort |
Efficient evolutionary algorithms for robust Volt/VAr control in modern power distribution systems |
author |
Vitor, Tiago Soares |
author_facet |
Vitor, Tiago Soares |
author_role |
author |
dc.contributor.none.fl_str_mv |
Júnior, José Carlos de Melo Vieira |
dc.contributor.author.fl_str_mv |
Vitor, Tiago Soares |
dc.subject.por.fl_str_mv |
Conservation voltage reduction Controle Volt/VAr Distributed generation Distribution systems Evolutionary multi-objective optimization Geração distribuída Otimização evolutiva multiobjetivo Projeto robusto Redução de tensão conservativa Robust design Sistemas de distribuição Volt/VAr control |
topic |
Conservation voltage reduction Controle Volt/VAr Distributed generation Distribution systems Evolutionary multi-objective optimization Geração distribuída Otimização evolutiva multiobjetivo Projeto robusto Redução de tensão conservativa Robust design Sistemas de distribuição Volt/VAr control |
description |
Modern power distribution systems have posed new challenges to Volt/VAr control strategies due to the increasing penetration of distributed generation (DG) units. But, with the advent of smart grid technologies, these systems have also provided remarkable opportunities for the development of new optimization and energy saving techniques. In this context, this thesis presents a new specialized evolutionary system for Volt/VAr optimization (SES-VVO) to efficiently solve the multi-objective optimization problem (MOP) when the number of tap-changing operations of voltage regulating devices is considered together with the conservation voltage reduction (CVR) goals. This problem is a challenging task for evolutionary algorithms (EAs) in terms of meeting voltage limits constraints and reaching near optimal solutions. Specialized search mechanisms were developed to improve the overall performance of the day-ahead operation planning and the hourly decision-making approaches, giving more realistic and cost saving solutions for distribution systems\' operators. The SES-VVO also corroborated with the development of an advanced strategy that has potential for real-time operation considering the stochastic behavior of load/DG variables. Further results demonstrated that the tap change costs have a decisive impact on the economics of VVO-based CVR. Additionally, this thesis investigates and proposes a novel robust framework – constituted by parameters and metrics – to quantitatively estimate how robust is a VVO solution when facing the stochastic nature of load/DG uncertainties. The analysis demonstrated that the VVO solutions designed to specifically search for CVR goals, both in energy and cost savings, are sensitive to these uncertainties, leading to violation of voltage standards. So, as the integration of DG is evermore increasing in distribution systems, uncertainty realizations can lead to poor voltage quality in non-robust VVO designs. To tackle this problem, the proposed parameters/metrics were incorporated into the VVO-based CVR via MOP. Thus, a balance between performance and robustness could be achieved through trade-off solutions, followed by a decision-making based on the used-preferred level of robustness. The results showed that at the expense of a small amount of energy and operating cost, greater robustness can be obtained to face the uncertainties. In summary, the proposed methods in this thesis are promising for smart grid applications, being capable of finding robust and cost-effective CVR solutions on a real-time scale. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18154/tde-24022021-165858/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18154/tde-24022021-165858/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1826319063500980224 |