Técnicas de avaliação da confiabilidade em estruturas de concreto armado
| Main Author: | |
|---|---|
| Publication Date: | 2001 |
| Format: | Doctoral thesis |
| Language: | por |
| Source: | Biblioteca Digital de Teses e Dissertações da UFRGS |
| Download full: | http://hdl.handle.net/10183/3350 |
Summary: | Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al (1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes. |
| id |
URGS_3f596e1e337bbf4e731fa2bad90c1bbc |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/3350 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
1853 |
| spelling |
Gomes, Herbert MartinsAwruch, Armando Miguel2007-06-06T17:28:06Z2001http://hdl.handle.net/10183/3350000291911Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al (1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes.In this work special emphasis is given to uncertainties in the evaluation of the structural behavior, looking for a better representation of the system characteristics and quantification of the significance of these uncertainties in the design. It is confronted some existing classical reliability analysis techniques, such as the First Order Reliability Method (FORM), Direct Monte Carlo Simulation (MC) and Monte Carlo Simulation with Adaptive Importance Sampling (MCIS), and approximated techniques such as Response Surface (RS) and Artificial Neural Networks (ANN). It is highlighted, when possible, the advantages and shortcoming in applying these techniques in problems with increasing complexity. Problems with some explicit and implicit limit state functions formulations with material and load spatial variability, including stochastic fields, are analyzed. The reliability analysis of reinforced concrete structure problems is specially considered taking into account the spatial variability of the material properties. A finite element algorithm is proposed to model its main characteristics. It is developed a multidimensional non-Gaussian stochastic field generation model (independent of the finite element mesh). Some techniques to accelerate the structural evaluation, performed by any of the methods mentioned previously, are also implemented. The reliability analysis by the Response Surface technique is performed with the algorithm implemented by Rajashekhar et al (1993). The reliability analysis is also accomplished with Shao’s et al (1997) algorithm, which is implemented together with computer codes for neural network simulation with multilayer perceptrons and radial basis functions. It was observed that the direct simulation techniques have a low performance in complex problems. FORM, Response Surface and Neural Networks techniques are outstanding techniques, despite the loss of accuracy due to approximations characterizing these methods.application/pdfporEstruturas de concreto armado : ConfiabilidadeElementos finitosTécnicas de avaliação da confiabilidade em estruturas de concreto armadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPrograma de Pós-Graduação em Engenharia CivilPorto Alegre, BR-RS2001doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000291911.pdf.txt000291911.pdf.txtExtracted Texttext/plain450169http://www.lume.ufrgs.br/bitstream/10183/3350/2/000291911.pdf.txtf5334af810cf9ca45c4653ec35dc5bb0MD52ORIGINAL000291911.pdf000291911.pdfTexto completoapplication/pdf4924060http://www.lume.ufrgs.br/bitstream/10183/3350/1/000291911.pdf81644130cb51f995c9405106a6e193b0MD5110183/33502021-03-09 04:55:02.391652oai:www.lume.ufrgs.br:10183/3350Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-03-09T07:55:02Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
Técnicas de avaliação da confiabilidade em estruturas de concreto armado |
| title |
Técnicas de avaliação da confiabilidade em estruturas de concreto armado |
| spellingShingle |
Técnicas de avaliação da confiabilidade em estruturas de concreto armado Gomes, Herbert Martins Estruturas de concreto armado : Confiabilidade Elementos finitos |
| title_short |
Técnicas de avaliação da confiabilidade em estruturas de concreto armado |
| title_full |
Técnicas de avaliação da confiabilidade em estruturas de concreto armado |
| title_fullStr |
Técnicas de avaliação da confiabilidade em estruturas de concreto armado |
| title_full_unstemmed |
Técnicas de avaliação da confiabilidade em estruturas de concreto armado |
| title_sort |
Técnicas de avaliação da confiabilidade em estruturas de concreto armado |
| author |
Gomes, Herbert Martins |
| author_facet |
Gomes, Herbert Martins |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Gomes, Herbert Martins |
| dc.contributor.advisor1.fl_str_mv |
Awruch, Armando Miguel |
| contributor_str_mv |
Awruch, Armando Miguel |
| dc.subject.por.fl_str_mv |
Estruturas de concreto armado : Confiabilidade Elementos finitos |
| topic |
Estruturas de concreto armado : Confiabilidade Elementos finitos |
| description |
Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al (1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes. |
| publishDate |
2001 |
| dc.date.issued.fl_str_mv |
2001 |
| dc.date.accessioned.fl_str_mv |
2007-06-06T17:28:06Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/3350 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
000291911 |
| url |
http://hdl.handle.net/10183/3350 |
| identifier_str_mv |
000291911 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/3350/2/000291911.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/3350/1/000291911.pdf |
| bitstream.checksum.fl_str_mv |
f5334af810cf9ca45c4653ec35dc5bb0 81644130cb51f995c9405106a6e193b0 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831314275444981760 |