Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach

Detalhes bibliográficos
Autor(a) principal: de Aguiar, Diego A. [UNESP]
Data de Publicação: 2025
Outros Autores: França, Hugo L., Oishi, Cassio M. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1002/fld.5381
https://hdl.handle.net/11449/303185
Resumo: The application of neural network-based modeling presents an efficient approach for exploring complex fluid dynamics, including droplet flow. In this study, we employ Long Short-Term Memory (LSTM) neural networks to predict energy budgets in droplet dynamics under surface tension effects. Two scenarios are explored: Droplets of various initial shapes impacting on a solid surface and collision of droplets. Using dimensionless numbers and droplet diameter time series data from numerical simulations, LSTM accurately predicts kinetic, dissipative, and surface energy trends at various Reynolds and Weber numbers. Numerical simulations are conducted through an in-house front-tracking code integrated with a finite-difference framework, enhanced by a particle extraction technique for interface acquisition from experimental images. Moreover, a two-stage sequential neural network is introduced to predict energy metrics and subsequently estimate static parameters such as Reynolds and Weber numbers. Although validated primarily on simulation data, the methodology demonstrates the potential for extension to experimental datasets. This approach offers valuable insights for applications such as inkjet printing, combustion engines, and other systems where energy budgets and dissipation rates are important. The study also highlights the importance of machine learning strategies for advancing the analysis of droplet dynamics in combination with numerical and/or experimental data.
id UNSP_e8aea5854964b1fab1883b7e5de3765c
oai_identifier_str oai:repositorio.unesp.br:11449/303185
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approachdropletsenergy budgetLSTMnumerical solutionpredictionsurface tensionThe application of neural network-based modeling presents an efficient approach for exploring complex fluid dynamics, including droplet flow. In this study, we employ Long Short-Term Memory (LSTM) neural networks to predict energy budgets in droplet dynamics under surface tension effects. Two scenarios are explored: Droplets of various initial shapes impacting on a solid surface and collision of droplets. Using dimensionless numbers and droplet diameter time series data from numerical simulations, LSTM accurately predicts kinetic, dissipative, and surface energy trends at various Reynolds and Weber numbers. Numerical simulations are conducted through an in-house front-tracking code integrated with a finite-difference framework, enhanced by a particle extraction technique for interface acquisition from experimental images. Moreover, a two-stage sequential neural network is introduced to predict energy metrics and subsequently estimate static parameters such as Reynolds and Weber numbers. Although validated primarily on simulation data, the methodology demonstrates the potential for extension to experimental datasets. This approach offers valuable insights for applications such as inkjet printing, combustion engines, and other systems where energy budgets and dissipation rates are important. The study also highlights the importance of machine learning strategies for advancing the analysis of droplet dynamics in combination with numerical and/or experimental data.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista “Júlio de Mesquita Filho”Van der Waals-Zeeman Institute Institute of Physics University of AmsterdamDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista “Júlio de Mesquita Filho”Universidade Estadual Paulista (UNESP)University of Amsterdamde Aguiar, Diego A. [UNESP]França, Hugo L.Oishi, Cassio M. [UNESP]2025-04-29T19:28:53Z2025-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article854-873http://dx.doi.org/10.1002/fld.5381International Journal for Numerical Methods in Fluids, v. 97, n. 5, p. 854-873, 2025.1097-03630271-2091https://hdl.handle.net/11449/30318510.1002/fld.53812-s2.0-105002134786Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal for Numerical Methods in Fluidsinfo:eu-repo/semantics/openAccess2025-04-30T14:09:10Zoai:repositorio.unesp.br:11449/303185Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:09:10Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach
title Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach
spellingShingle Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach
de Aguiar, Diego A. [UNESP]
droplets
energy budget
LSTM
numerical solution
prediction
surface tension
title_short Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach
title_full Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach
title_fullStr Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach
title_full_unstemmed Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach
title_sort Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach
author de Aguiar, Diego A. [UNESP]
author_facet de Aguiar, Diego A. [UNESP]
França, Hugo L.
Oishi, Cassio M. [UNESP]
author_role author
author2 França, Hugo L.
Oishi, Cassio M. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
University of Amsterdam
dc.contributor.author.fl_str_mv de Aguiar, Diego A. [UNESP]
França, Hugo L.
Oishi, Cassio M. [UNESP]
dc.subject.por.fl_str_mv droplets
energy budget
LSTM
numerical solution
prediction
surface tension
topic droplets
energy budget
LSTM
numerical solution
prediction
surface tension
description The application of neural network-based modeling presents an efficient approach for exploring complex fluid dynamics, including droplet flow. In this study, we employ Long Short-Term Memory (LSTM) neural networks to predict energy budgets in droplet dynamics under surface tension effects. Two scenarios are explored: Droplets of various initial shapes impacting on a solid surface and collision of droplets. Using dimensionless numbers and droplet diameter time series data from numerical simulations, LSTM accurately predicts kinetic, dissipative, and surface energy trends at various Reynolds and Weber numbers. Numerical simulations are conducted through an in-house front-tracking code integrated with a finite-difference framework, enhanced by a particle extraction technique for interface acquisition from experimental images. Moreover, a two-stage sequential neural network is introduced to predict energy metrics and subsequently estimate static parameters such as Reynolds and Weber numbers. Although validated primarily on simulation data, the methodology demonstrates the potential for extension to experimental datasets. This approach offers valuable insights for applications such as inkjet printing, combustion engines, and other systems where energy budgets and dissipation rates are important. The study also highlights the importance of machine learning strategies for advancing the analysis of droplet dynamics in combination with numerical and/or experimental data.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-29T19:28:53Z
2025-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1002/fld.5381
International Journal for Numerical Methods in Fluids, v. 97, n. 5, p. 854-873, 2025.
1097-0363
0271-2091
https://hdl.handle.net/11449/303185
10.1002/fld.5381
2-s2.0-105002134786
url http://dx.doi.org/10.1002/fld.5381
https://hdl.handle.net/11449/303185
identifier_str_mv International Journal for Numerical Methods in Fluids, v. 97, n. 5, p. 854-873, 2025.
1097-0363
0271-2091
10.1002/fld.5381
2-s2.0-105002134786
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal for Numerical Methods in Fluids
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 854-873
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482785122779136