Dark energy as a kinematic effect

Bibliographic Details
Main Author: Jennen, Hendrik [UNESP]
Publication Date: 2016
Format: Doctoral thesis
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://hdl.handle.net/11449/134324
Summary: Observations during the last three decades have confirmed thatthe universe momentarily expands at an accelerated rate, which is assumed to be driven by dark energy whose origin remains unknown. The minimal manner of modelling dark energy is to include a positive cosmological constant in Einstein's equations, whose solution in vacuum is de Sitter space. This indicates that the large-scale kinematics of spacetime is approximated by the de Sitter group SO(1,4) rather than the Poincaré group ISO(1,3). In this thesis we take this consideration to heart and conjecture that the group governing the local kinematics of physics is the de Sitter group, so that the amount to which it is a deformation of the Poincaré group depends pointwise on the value of a nonconstant cosmological function. With the objective of constructing such a framework we study the Cartan geometry in which the model Klein space is at each point a de Sitter space for which the combined set of pseudoradii forms a nonconstant function on spacetime. We find that the torsion receives a contribution that is not present for a cosmological constant. Invoking the theory of nonlinear realizations we extend the class of symmetries from the Lorentz group SO(1,3) to the enclosing de Sitter group. Subsequently, we find that the geometric structure of teleparallel gravity--- a description for the gravitational interaction physically equivalent to general relativity--- is a nonlinear Riemann--Cartan geometry.This finally inspires us to build on top of a de Sitter--Cartan geometry with a cosmological function a generalization of teleparallel gravity that is consistent with a kinematics locally regulated by the de Sitter group. The cosmological function is given its own dynamics and naturally emerges nonminimally coupled to the gravitational field in a manner akin to teleparallel dark energy models or scalar-tensor theories in general relativity. New in the theory here presented, the cosmological function gives rise to a kinematic contribution in the deviation equation for the world lines of adjacent free-falling particles. While having its own dynamics, dark energy manifests itself in the local kinematics of spacetime.
id UNSP_e4cdce87a9f7134c31e2f6f0fb218629
oai_identifier_str oai:repositorio.unesp.br:11449/134324
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Dark energy as a kinematic effectEnergia escura como um efeito cinemáticoEnergia escuraRelatividade restrita de SitterGravitação teleparalelaFunção cosmológicaGeometria de CartanDark energySitter special relativityTeleparallel gravityCosmological functionCartan geometryObservations during the last three decades have confirmed thatthe universe momentarily expands at an accelerated rate, which is assumed to be driven by dark energy whose origin remains unknown. The minimal manner of modelling dark energy is to include a positive cosmological constant in Einstein's equations, whose solution in vacuum is de Sitter space. This indicates that the large-scale kinematics of spacetime is approximated by the de Sitter group SO(1,4) rather than the Poincaré group ISO(1,3). In this thesis we take this consideration to heart and conjecture that the group governing the local kinematics of physics is the de Sitter group, so that the amount to which it is a deformation of the Poincaré group depends pointwise on the value of a nonconstant cosmological function. With the objective of constructing such a framework we study the Cartan geometry in which the model Klein space is at each point a de Sitter space for which the combined set of pseudoradii forms a nonconstant function on spacetime. We find that the torsion receives a contribution that is not present for a cosmological constant. Invoking the theory of nonlinear realizations we extend the class of symmetries from the Lorentz group SO(1,3) to the enclosing de Sitter group. Subsequently, we find that the geometric structure of teleparallel gravity--- a description for the gravitational interaction physically equivalent to general relativity--- is a nonlinear Riemann--Cartan geometry.This finally inspires us to build on top of a de Sitter--Cartan geometry with a cosmological function a generalization of teleparallel gravity that is consistent with a kinematics locally regulated by the de Sitter group. The cosmological function is given its own dynamics and naturally emerges nonminimally coupled to the gravitational field in a manner akin to teleparallel dark energy models or scalar-tensor theories in general relativity. New in the theory here presented, the cosmological function gives rise to a kinematic contribution in the deviation equation for the world lines of adjacent free-falling particles. While having its own dynamics, dark energy manifests itself in the local kinematics of spacetime.Observações realizadas nas últimas três décadas confirmaram que o universo se encontra em um estado de expansão acelerada. Essa aceleração é atribuída à presença da chamada energia escura, cuja origem permanece desconhecida. A maneira mais simples de se modelar a energia escura consiste em introduzir uma constante cosmológica positiva nas equações de Einstein, cuja solução no vácuo é então dada pelo espaço de de Sitter. Isso, por sua vez, indica que a cinemática subjacente ao espaço-tempo deve ser aproximadamente governada pelo grupo de de Sitter SO(1,4), e não pelo grupo de Poincaré ISO(1,3). Nesta tese, adotamos tal argumento como base para a conjectura de que o grupo que governa a cinemática local é o grupo de de Sitter, com o desvio em relação ao grupo de Poincaré dependendo ponto-a-ponto do valor de um termo cosmológico variável. Com o propósito de desenvolver tal formalismo, estudamos a geometria de Cartan na qual o espaço modelo de Klein é, em cada ponto, um espaço de de Sitter com o conjunto de pseudo-raios definindo uma função não-constante do espaço-tempo. Encontramos que o tensor de torção nessa geometria adquire uma contribuição que não está presente no caso de uma constante cosmológica. Fazendo uso da teoria das realizações não-lineares, estendemos a classe de simetrias do grupo de Lorentz SO(1,3) para o grupo de de Sitter. Em seguida, verificamos que a estrutura da gravitação teleparalela--- uma teoria gravitacional equivalente à relatividade geral--- é uma geometria de Riemann-Cartan não linear. Inspirados nesse resultado, construímos uma generalização da gravitação teleparalela sobre uma geometria de de Sitter--Cartan com um termo cosmológico dado por uma função do espaço-tempo, a qual é consistente com uma cinemática localmente governada pelo grupo de de Sitter. A função cosmológica possui sua própria dinâmica e emerge naturalmente acoplada não-minimalmente ao campo gravitacional, analogamente ao que ocorre nos modelos telaparalelos de energia escura ou em teorias de gravitação escalares-tensoriais. Característica peculiar do modelo aqui desenvolvido, a função cosmológica fornece uma contribuição para o desvio geodésico de partículas adjacentes em queda livre. Embora tendo sua própria dinâmica, a energia escura manifesta-se como um efeito da cinemática local do espaço-tempo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista (Unesp)Pereira, José Geraldo [UNESP]Universidade Estadual Paulista (Unesp)Jennen, Hendrik [UNESP]2016-02-24T13:39:03Z2016-02-24T13:39:03Z2016-02-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/13432400086713033015015001P71599966126072450enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-11-22T14:34:23Zoai:repositorio.unesp.br:11449/134324Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-22T14:34:23Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Dark energy as a kinematic effect
Energia escura como um efeito cinemático
title Dark energy as a kinematic effect
spellingShingle Dark energy as a kinematic effect
Jennen, Hendrik [UNESP]
Energia escura
Relatividade restrita de Sitter
Gravitação teleparalela
Função cosmológica
Geometria de Cartan
Dark energy
Sitter special relativity
Teleparallel gravity
Cosmological function
Cartan geometry
title_short Dark energy as a kinematic effect
title_full Dark energy as a kinematic effect
title_fullStr Dark energy as a kinematic effect
title_full_unstemmed Dark energy as a kinematic effect
title_sort Dark energy as a kinematic effect
author Jennen, Hendrik [UNESP]
author_facet Jennen, Hendrik [UNESP]
author_role author
dc.contributor.none.fl_str_mv Pereira, José Geraldo [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Jennen, Hendrik [UNESP]
dc.subject.por.fl_str_mv Energia escura
Relatividade restrita de Sitter
Gravitação teleparalela
Função cosmológica
Geometria de Cartan
Dark energy
Sitter special relativity
Teleparallel gravity
Cosmological function
Cartan geometry
topic Energia escura
Relatividade restrita de Sitter
Gravitação teleparalela
Função cosmológica
Geometria de Cartan
Dark energy
Sitter special relativity
Teleparallel gravity
Cosmological function
Cartan geometry
description Observations during the last three decades have confirmed thatthe universe momentarily expands at an accelerated rate, which is assumed to be driven by dark energy whose origin remains unknown. The minimal manner of modelling dark energy is to include a positive cosmological constant in Einstein's equations, whose solution in vacuum is de Sitter space. This indicates that the large-scale kinematics of spacetime is approximated by the de Sitter group SO(1,4) rather than the Poincaré group ISO(1,3). In this thesis we take this consideration to heart and conjecture that the group governing the local kinematics of physics is the de Sitter group, so that the amount to which it is a deformation of the Poincaré group depends pointwise on the value of a nonconstant cosmological function. With the objective of constructing such a framework we study the Cartan geometry in which the model Klein space is at each point a de Sitter space for which the combined set of pseudoradii forms a nonconstant function on spacetime. We find that the torsion receives a contribution that is not present for a cosmological constant. Invoking the theory of nonlinear realizations we extend the class of symmetries from the Lorentz group SO(1,3) to the enclosing de Sitter group. Subsequently, we find that the geometric structure of teleparallel gravity--- a description for the gravitational interaction physically equivalent to general relativity--- is a nonlinear Riemann--Cartan geometry.This finally inspires us to build on top of a de Sitter--Cartan geometry with a cosmological function a generalization of teleparallel gravity that is consistent with a kinematics locally regulated by the de Sitter group. The cosmological function is given its own dynamics and naturally emerges nonminimally coupled to the gravitational field in a manner akin to teleparallel dark energy models or scalar-tensor theories in general relativity. New in the theory here presented, the cosmological function gives rise to a kinematic contribution in the deviation equation for the world lines of adjacent free-falling particles. While having its own dynamics, dark energy manifests itself in the local kinematics of spacetime.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-24T13:39:03Z
2016-02-24T13:39:03Z
2016-02-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/134324
000867130
33015015001P7
1599966126072450
url http://hdl.handle.net/11449/134324
identifier_str_mv 000867130
33015015001P7
1599966126072450
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483074996371456