Degradation analysis in the estimation of photometric redshifts from non-representative training sets
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2018 |
| Outros Autores: | , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1093/mnras/sty880 http://hdl.handle.net/11449/164332 |
Resumo: | We perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set. |
| id |
UNSP_e2dae442bdee0194ab9f207eb08923f5 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/164332 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Degradation analysis in the estimation of photometric redshifts from non-representative training setsmethods: data analysisgalaxies: distances and redshiftsWe perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Science and Technology Facilities CouncilBIS National E-infrastructure capitalSTFC capital grantSTFC DiRAC OperationsDurham UniversityRoyal Society via an RSURFEuropean Community through the DEDALE grant within the H2020 Framework Program of the European CommissionUniv Estadual Paulista, Inst Fis Teor, R Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, BrazilUCL, Dept Phys & Astron, Gower St, London WC1E 6BT, EnglandCALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USACALTECH, IPAC, Mail Code 314-6,1200 East Calif Blvd, Pasadena, CA 91125 USARhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South AfricaUniv Estadual Paulista, Inst Fis Teor, R Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, BrazilScience and Technology Facilities Council: ST/J501013/1Science and Technology Facilities Council: ST/L00075X/1BIS National E-infrastructure capital: ST/K00042X/1STFC capital grant: ST/H008519/1STFC DiRAC Operations: ST/K003267/1European Community through the DEDALE grant within the H2020 Framework Program of the European Commission: 665044Oxford Univ PressUniversidade Estadual Paulista (Unesp)UCLCALTECHRhodes UnivRivera, J. D. [UNESP]Moraes, B.Merson, A. I.Jouvel, S.Abdalla, F. B.Abdalla, M. C. B. [UNESP]2018-11-26T17:52:10Z2018-11-26T17:52:10Z2018-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4330-4347application/pdfhttp://dx.doi.org/10.1093/mnras/sty880Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 477, n. 4, p. 4330-4347, 2018.0035-8711http://hdl.handle.net/11449/16433210.1093/mnras/sty880WOS:000435630100004WOS000435630100004.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonthly Notices Of The Royal Astronomical Society2,346info:eu-repo/semantics/openAccess2024-11-22T20:32:48Zoai:repositorio.unesp.br:11449/164332Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-22T20:32:48Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Degradation analysis in the estimation of photometric redshifts from non-representative training sets |
| title |
Degradation analysis in the estimation of photometric redshifts from non-representative training sets |
| spellingShingle |
Degradation analysis in the estimation of photometric redshifts from non-representative training sets Rivera, J. D. [UNESP] methods: data analysis galaxies: distances and redshifts |
| title_short |
Degradation analysis in the estimation of photometric redshifts from non-representative training sets |
| title_full |
Degradation analysis in the estimation of photometric redshifts from non-representative training sets |
| title_fullStr |
Degradation analysis in the estimation of photometric redshifts from non-representative training sets |
| title_full_unstemmed |
Degradation analysis in the estimation of photometric redshifts from non-representative training sets |
| title_sort |
Degradation analysis in the estimation of photometric redshifts from non-representative training sets |
| author |
Rivera, J. D. [UNESP] |
| author_facet |
Rivera, J. D. [UNESP] Moraes, B. Merson, A. I. Jouvel, S. Abdalla, F. B. Abdalla, M. C. B. [UNESP] |
| author_role |
author |
| author2 |
Moraes, B. Merson, A. I. Jouvel, S. Abdalla, F. B. Abdalla, M. C. B. [UNESP] |
| author2_role |
author author author author author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) UCL CALTECH Rhodes Univ |
| dc.contributor.author.fl_str_mv |
Rivera, J. D. [UNESP] Moraes, B. Merson, A. I. Jouvel, S. Abdalla, F. B. Abdalla, M. C. B. [UNESP] |
| dc.subject.por.fl_str_mv |
methods: data analysis galaxies: distances and redshifts |
| topic |
methods: data analysis galaxies: distances and redshifts |
| description |
We perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-11-26T17:52:10Z 2018-11-26T17:52:10Z 2018-07-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1093/mnras/sty880 Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 477, n. 4, p. 4330-4347, 2018. 0035-8711 http://hdl.handle.net/11449/164332 10.1093/mnras/sty880 WOS:000435630100004 WOS000435630100004.pdf |
| url |
http://dx.doi.org/10.1093/mnras/sty880 http://hdl.handle.net/11449/164332 |
| identifier_str_mv |
Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 477, n. 4, p. 4330-4347, 2018. 0035-8711 10.1093/mnras/sty880 WOS:000435630100004 WOS000435630100004.pdf |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Monthly Notices Of The Royal Astronomical Society 2,346 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
4330-4347 application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford Univ Press |
| publisher.none.fl_str_mv |
Oxford Univ Press |
| dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834483375089385472 |