Degradation analysis in the estimation of photometric redshifts from non-representative training sets

Detalhes bibliográficos
Autor(a) principal: Rivera, J. D. [UNESP]
Data de Publicação: 2018
Outros Autores: Moraes, B., Merson, A. I., Jouvel, S., Abdalla, F. B., Abdalla, M. C. B. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1093/mnras/sty880
http://hdl.handle.net/11449/164332
Resumo: We perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set.
id UNSP_e2dae442bdee0194ab9f207eb08923f5
oai_identifier_str oai:repositorio.unesp.br:11449/164332
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Degradation analysis in the estimation of photometric redshifts from non-representative training setsmethods: data analysisgalaxies: distances and redshiftsWe perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Science and Technology Facilities CouncilBIS National E-infrastructure capitalSTFC capital grantSTFC DiRAC OperationsDurham UniversityRoyal Society via an RSURFEuropean Community through the DEDALE grant within the H2020 Framework Program of the European CommissionUniv Estadual Paulista, Inst Fis Teor, R Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, BrazilUCL, Dept Phys & Astron, Gower St, London WC1E 6BT, EnglandCALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USACALTECH, IPAC, Mail Code 314-6,1200 East Calif Blvd, Pasadena, CA 91125 USARhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South AfricaUniv Estadual Paulista, Inst Fis Teor, R Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, BrazilScience and Technology Facilities Council: ST/J501013/1Science and Technology Facilities Council: ST/L00075X/1BIS National E-infrastructure capital: ST/K00042X/1STFC capital grant: ST/H008519/1STFC DiRAC Operations: ST/K003267/1European Community through the DEDALE grant within the H2020 Framework Program of the European Commission: 665044Oxford Univ PressUniversidade Estadual Paulista (Unesp)UCLCALTECHRhodes UnivRivera, J. D. [UNESP]Moraes, B.Merson, A. I.Jouvel, S.Abdalla, F. B.Abdalla, M. C. B. [UNESP]2018-11-26T17:52:10Z2018-11-26T17:52:10Z2018-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4330-4347application/pdfhttp://dx.doi.org/10.1093/mnras/sty880Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 477, n. 4, p. 4330-4347, 2018.0035-8711http://hdl.handle.net/11449/16433210.1093/mnras/sty880WOS:000435630100004WOS000435630100004.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonthly Notices Of The Royal Astronomical Society2,346info:eu-repo/semantics/openAccess2024-11-22T20:32:48Zoai:repositorio.unesp.br:11449/164332Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-22T20:32:48Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Degradation analysis in the estimation of photometric redshifts from non-representative training sets
title Degradation analysis in the estimation of photometric redshifts from non-representative training sets
spellingShingle Degradation analysis in the estimation of photometric redshifts from non-representative training sets
Rivera, J. D. [UNESP]
methods: data analysis
galaxies: distances and redshifts
title_short Degradation analysis in the estimation of photometric redshifts from non-representative training sets
title_full Degradation analysis in the estimation of photometric redshifts from non-representative training sets
title_fullStr Degradation analysis in the estimation of photometric redshifts from non-representative training sets
title_full_unstemmed Degradation analysis in the estimation of photometric redshifts from non-representative training sets
title_sort Degradation analysis in the estimation of photometric redshifts from non-representative training sets
author Rivera, J. D. [UNESP]
author_facet Rivera, J. D. [UNESP]
Moraes, B.
Merson, A. I.
Jouvel, S.
Abdalla, F. B.
Abdalla, M. C. B. [UNESP]
author_role author
author2 Moraes, B.
Merson, A. I.
Jouvel, S.
Abdalla, F. B.
Abdalla, M. C. B. [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
UCL
CALTECH
Rhodes Univ
dc.contributor.author.fl_str_mv Rivera, J. D. [UNESP]
Moraes, B.
Merson, A. I.
Jouvel, S.
Abdalla, F. B.
Abdalla, M. C. B. [UNESP]
dc.subject.por.fl_str_mv methods: data analysis
galaxies: distances and redshifts
topic methods: data analysis
galaxies: distances and redshifts
description We perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-26T17:52:10Z
2018-11-26T17:52:10Z
2018-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1093/mnras/sty880
Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 477, n. 4, p. 4330-4347, 2018.
0035-8711
http://hdl.handle.net/11449/164332
10.1093/mnras/sty880
WOS:000435630100004
WOS000435630100004.pdf
url http://dx.doi.org/10.1093/mnras/sty880
http://hdl.handle.net/11449/164332
identifier_str_mv Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 477, n. 4, p. 4330-4347, 2018.
0035-8711
10.1093/mnras/sty880
WOS:000435630100004
WOS000435630100004.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Monthly Notices Of The Royal Astronomical Society
2,346
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4330-4347
application/pdf
dc.publisher.none.fl_str_mv Oxford Univ Press
publisher.none.fl_str_mv Oxford Univ Press
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483375089385472