Modeling and analysis of artificial neural networks applied in operations research

Bibliographic Details
Main Author: da Silva, I. N.
Publication Date: 2001
Other Authors: de Souza, A. N., Bordon, M. E.
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070
http://hdl.handle.net/11449/8879
Summary: Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
id UNSP_d85aeac66d07ee28e4a67c9dd6a08239
oai_identifier_str oai:repositorio.unesp.br:11449/8879
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Modeling and analysis of artificial neural networks applied in operations researchoperations researchneural networkslinear programmingartificial intelligenceparameter optimizationArtificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.UNESP, FE, DEE, Sch Engn,Dept Elect Engn, BR-17033360 Bauru, SP, BrazilUNESP, FE, DEE, Sch Engn,Dept Elect Engn, BR-17033360 Bauru, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)da Silva, I. N.de Souza, A. N.Bordon, M. E.2014-05-20T13:27:11Z2014-05-20T13:27:11Z2001-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject315-320https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070Manufacturing, Modeling, Management and Control, Proceedings. Kidlington: Pergamon-Elsevier B.V., p. 315-320, 2001.0962-9505http://hdl.handle.net/11449/8879WOS:000177912500054821277596049468655898388442982320000-0001-8510-8245Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengManufacturing, Modeling, Management and Control, Proceedingsinfo:eu-repo/semantics/openAccess2024-06-28T13:34:42Zoai:repositorio.unesp.br:11449/8879Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-28T13:34:42Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Modeling and analysis of artificial neural networks applied in operations research
title Modeling and analysis of artificial neural networks applied in operations research
spellingShingle Modeling and analysis of artificial neural networks applied in operations research
da Silva, I. N.
operations research
neural networks
linear programming
artificial intelligence
parameter optimization
title_short Modeling and analysis of artificial neural networks applied in operations research
title_full Modeling and analysis of artificial neural networks applied in operations research
title_fullStr Modeling and analysis of artificial neural networks applied in operations research
title_full_unstemmed Modeling and analysis of artificial neural networks applied in operations research
title_sort Modeling and analysis of artificial neural networks applied in operations research
author da Silva, I. N.
author_facet da Silva, I. N.
de Souza, A. N.
Bordon, M. E.
author_role author
author2 de Souza, A. N.
Bordon, M. E.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv da Silva, I. N.
de Souza, A. N.
Bordon, M. E.
dc.subject.por.fl_str_mv operations research
neural networks
linear programming
artificial intelligence
parameter optimization
topic operations research
neural networks
linear programming
artificial intelligence
parameter optimization
description Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01
2014-05-20T13:27:11Z
2014-05-20T13:27:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070
Manufacturing, Modeling, Management and Control, Proceedings. Kidlington: Pergamon-Elsevier B.V., p. 315-320, 2001.
0962-9505
http://hdl.handle.net/11449/8879
WOS:000177912500054
8212775960494686
5589838844298232
0000-0001-8510-8245
url https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070
http://hdl.handle.net/11449/8879
identifier_str_mv Manufacturing, Modeling, Management and Control, Proceedings. Kidlington: Pergamon-Elsevier B.V., p. 315-320, 2001.
0962-9505
WOS:000177912500054
8212775960494686
5589838844298232
0000-0001-8510-8245
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Manufacturing, Modeling, Management and Control, Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 315-320
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484612393336832