Modeling and analysis of artificial neural networks applied in operations research
| Main Author: | |
|---|---|
| Publication Date: | 2001 |
| Other Authors: | , |
| Format: | Conference object |
| Language: | eng |
| Source: | Repositório Institucional da UNESP |
| Download full: | https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070 http://hdl.handle.net/11449/8879 |
Summary: | Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC. |
| id |
UNSP_d85aeac66d07ee28e4a67c9dd6a08239 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/8879 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Modeling and analysis of artificial neural networks applied in operations researchoperations researchneural networkslinear programmingartificial intelligenceparameter optimizationArtificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.UNESP, FE, DEE, Sch Engn,Dept Elect Engn, BR-17033360 Bauru, SP, BrazilUNESP, FE, DEE, Sch Engn,Dept Elect Engn, BR-17033360 Bauru, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)da Silva, I. N.de Souza, A. N.Bordon, M. E.2014-05-20T13:27:11Z2014-05-20T13:27:11Z2001-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject315-320https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070Manufacturing, Modeling, Management and Control, Proceedings. Kidlington: Pergamon-Elsevier B.V., p. 315-320, 2001.0962-9505http://hdl.handle.net/11449/8879WOS:000177912500054821277596049468655898388442982320000-0001-8510-8245Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengManufacturing, Modeling, Management and Control, Proceedingsinfo:eu-repo/semantics/openAccess2024-06-28T13:34:42Zoai:repositorio.unesp.br:11449/8879Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-28T13:34:42Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Modeling and analysis of artificial neural networks applied in operations research |
| title |
Modeling and analysis of artificial neural networks applied in operations research |
| spellingShingle |
Modeling and analysis of artificial neural networks applied in operations research da Silva, I. N. operations research neural networks linear programming artificial intelligence parameter optimization |
| title_short |
Modeling and analysis of artificial neural networks applied in operations research |
| title_full |
Modeling and analysis of artificial neural networks applied in operations research |
| title_fullStr |
Modeling and analysis of artificial neural networks applied in operations research |
| title_full_unstemmed |
Modeling and analysis of artificial neural networks applied in operations research |
| title_sort |
Modeling and analysis of artificial neural networks applied in operations research |
| author |
da Silva, I. N. |
| author_facet |
da Silva, I. N. de Souza, A. N. Bordon, M. E. |
| author_role |
author |
| author2 |
de Souza, A. N. Bordon, M. E. |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
| dc.contributor.author.fl_str_mv |
da Silva, I. N. de Souza, A. N. Bordon, M. E. |
| dc.subject.por.fl_str_mv |
operations research neural networks linear programming artificial intelligence parameter optimization |
| topic |
operations research neural networks linear programming artificial intelligence parameter optimization |
| description |
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC. |
| publishDate |
2001 |
| dc.date.none.fl_str_mv |
2001-01-01 2014-05-20T13:27:11Z 2014-05-20T13:27:11Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070 Manufacturing, Modeling, Management and Control, Proceedings. Kidlington: Pergamon-Elsevier B.V., p. 315-320, 2001. 0962-9505 http://hdl.handle.net/11449/8879 WOS:000177912500054 8212775960494686 5589838844298232 0000-0001-8510-8245 |
| url |
https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070 http://hdl.handle.net/11449/8879 |
| identifier_str_mv |
Manufacturing, Modeling, Management and Control, Proceedings. Kidlington: Pergamon-Elsevier B.V., p. 315-320, 2001. 0962-9505 WOS:000177912500054 8212775960494686 5589838844298232 0000-0001-8510-8245 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Manufacturing, Modeling, Management and Control, Proceedings |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
315-320 |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834484612393336832 |