Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution

Detalhes bibliográficos
Autor(a) principal: Moala, Fernando A. [UNESP]
Data de Publicação: 2023
Outros Autores: Moraes, Gustavo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.15446/rce.v46n1.95989
http://hdl.handle.net/11449/248264
Resumo: In this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution P E. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the P E distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches.
id UNSP_cd76e3e9d94fc7acfdc9d15f6d5efa7f
oai_identifier_str oai:repositorio.unesp.br:11449/248264
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential DistributionDistribuciones previas objetivas para estimar los parámetros de la distribución Poisson-ExponencialBayesianJeffreysMDIPObjectivePoisson-ExponentialPriorIn this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution P E. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the P E distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches.Departamento de Estatística Faculdade de Ciências e Tecnologia Universidade Estadual PaulistaDepartamento de Estatística Faculdade de Ciências e Tecnologia Universidade Estadual PaulistaUniversidade Estadual Paulista (UNESP)Moala, Fernando A. [UNESP]Moraes, Gustavo [UNESP]2023-07-29T13:39:07Z2023-07-29T13:39:07Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article93-110http://dx.doi.org/10.15446/rce.v46n1.95989Revista Colombiana de Estadistica, v. 46, n. 1, p. 93-110, 2023.2389-89760120-1751http://hdl.handle.net/11449/24826410.15446/rce.v46n1.959892-s2.0-85146823183Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Colombiana de Estadisticainfo:eu-repo/semantics/openAccess2024-06-18T18:17:54Zoai:repositorio.unesp.br:11449/248264Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-18T18:17:54Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
Distribuciones previas objetivas para estimar los parámetros de la distribución Poisson-Exponencial
title Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
spellingShingle Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
Moala, Fernando A. [UNESP]
Bayesian
Jeffreys
MDIP
Objective
Poisson-Exponential
Prior
title_short Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
title_full Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
title_fullStr Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
title_full_unstemmed Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
title_sort Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
author Moala, Fernando A. [UNESP]
author_facet Moala, Fernando A. [UNESP]
Moraes, Gustavo [UNESP]
author_role author
author2 Moraes, Gustavo [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Moala, Fernando A. [UNESP]
Moraes, Gustavo [UNESP]
dc.subject.por.fl_str_mv Bayesian
Jeffreys
MDIP
Objective
Poisson-Exponential
Prior
topic Bayesian
Jeffreys
MDIP
Objective
Poisson-Exponential
Prior
description In this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution P E. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the P E distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:39:07Z
2023-07-29T13:39:07Z
2023-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.15446/rce.v46n1.95989
Revista Colombiana de Estadistica, v. 46, n. 1, p. 93-110, 2023.
2389-8976
0120-1751
http://hdl.handle.net/11449/248264
10.15446/rce.v46n1.95989
2-s2.0-85146823183
url http://dx.doi.org/10.15446/rce.v46n1.95989
http://hdl.handle.net/11449/248264
identifier_str_mv Revista Colombiana de Estadistica, v. 46, n. 1, p. 93-110, 2023.
2389-8976
0120-1751
10.15446/rce.v46n1.95989
2-s2.0-85146823183
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Revista Colombiana de Estadistica
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 93-110
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483156353286144