Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.15446/rce.v46n1.95989 http://hdl.handle.net/11449/248264 |
Summary: | In this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution P E. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the P E distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches. |
id |
UNSP_cd76e3e9d94fc7acfdc9d15f6d5efa7f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/248264 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential DistributionDistribuciones previas objetivas para estimar los parámetros de la distribución Poisson-ExponencialBayesianJeffreysMDIPObjectivePoisson-ExponentialPriorIn this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution P E. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the P E distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches.Departamento de Estatística Faculdade de Ciências e Tecnologia Universidade Estadual PaulistaDepartamento de Estatística Faculdade de Ciências e Tecnologia Universidade Estadual PaulistaUniversidade Estadual Paulista (UNESP)Moala, Fernando A. [UNESP]Moraes, Gustavo [UNESP]2023-07-29T13:39:07Z2023-07-29T13:39:07Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article93-110http://dx.doi.org/10.15446/rce.v46n1.95989Revista Colombiana de Estadistica, v. 46, n. 1, p. 93-110, 2023.2389-89760120-1751http://hdl.handle.net/11449/24826410.15446/rce.v46n1.959892-s2.0-85146823183Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Colombiana de Estadisticainfo:eu-repo/semantics/openAccess2024-06-18T18:17:54Zoai:repositorio.unesp.br:11449/248264Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-18T18:17:54Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution Distribuciones previas objetivas para estimar los parámetros de la distribución Poisson-Exponencial |
title |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution |
spellingShingle |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution Moala, Fernando A. [UNESP] Bayesian Jeffreys MDIP Objective Poisson-Exponential Prior |
title_short |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution |
title_full |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution |
title_fullStr |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution |
title_full_unstemmed |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution |
title_sort |
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution |
author |
Moala, Fernando A. [UNESP] |
author_facet |
Moala, Fernando A. [UNESP] Moraes, Gustavo [UNESP] |
author_role |
author |
author2 |
Moraes, Gustavo [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Moala, Fernando A. [UNESP] Moraes, Gustavo [UNESP] |
dc.subject.por.fl_str_mv |
Bayesian Jeffreys MDIP Objective Poisson-Exponential Prior |
topic |
Bayesian Jeffreys MDIP Objective Poisson-Exponential Prior |
description |
In this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution P E. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the P E distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-29T13:39:07Z 2023-07-29T13:39:07Z 2023-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.15446/rce.v46n1.95989 Revista Colombiana de Estadistica, v. 46, n. 1, p. 93-110, 2023. 2389-8976 0120-1751 http://hdl.handle.net/11449/248264 10.15446/rce.v46n1.95989 2-s2.0-85146823183 |
url |
http://dx.doi.org/10.15446/rce.v46n1.95989 http://hdl.handle.net/11449/248264 |
identifier_str_mv |
Revista Colombiana de Estadistica, v. 46, n. 1, p. 93-110, 2023. 2389-8976 0120-1751 10.15446/rce.v46n1.95989 2-s2.0-85146823183 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Revista Colombiana de Estadistica |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
93-110 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483156353286144 |