Approximation of hyperbolic tangent activation function using hybrid methods

Bibliographic Details
Main Author: Sartin, Maicon A.
Publication Date: 2013
Other Authors: Da Silva, Alexandre C.R. [UNESP]
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1109/ReCoSoC.2013.6581545
http://hdl.handle.net/11449/76564
Summary: Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.
id UNSP_c09013bfd0f306e4da23c0f605683c1a
oai_identifier_str oai:repositorio.unesp.br:11449/76564
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Approximation of hyperbolic tangent activation function using hybrid methodsactivation functionFPGAHybrid Methodshyperbolic tangentActivation functionsHybrid methodHyperbolic tangentNonlinear activation functionsNonlinear functionsNonlinear problemsReconfigurable devicesSystem architecturesCommunicationField programmable gate arrays (FPGA)Hyperbolic functionsNeural networksReconfigurable hardwareArtificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.Department of Computing UNEMAT - Universidade Do Estado de Mato Grosso, Colider, MTDepartment of Electrical Engineering UNESP - Universidade Estadual Paulista, Ilha Solteira, SPDepartment of Electrical Engineering UNESP - Universidade Estadual Paulista, Ilha Solteira, SPUniversidade do Estado de Mato Grosso (UNEMAT)Universidade Estadual Paulista (Unesp)Sartin, Maicon A.Da Silva, Alexandre C.R. [UNESP]2014-05-27T11:30:41Z2014-05-27T11:30:41Z2013-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ReCoSoC.2013.65815452013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013.http://hdl.handle.net/11449/7656410.1109/ReCoSoC.2013.65815452-s2.0-84883659156Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013info:eu-repo/semantics/openAccess2024-07-04T19:11:39Zoai:repositorio.unesp.br:11449/76564Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-04T19:11:39Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Approximation of hyperbolic tangent activation function using hybrid methods
title Approximation of hyperbolic tangent activation function using hybrid methods
spellingShingle Approximation of hyperbolic tangent activation function using hybrid methods
Sartin, Maicon A.
activation function
FPGA
Hybrid Methods
hyperbolic tangent
Activation functions
Hybrid method
Hyperbolic tangent
Nonlinear activation functions
Nonlinear functions
Nonlinear problems
Reconfigurable devices
System architectures
Communication
Field programmable gate arrays (FPGA)
Hyperbolic functions
Neural networks
Reconfigurable hardware
title_short Approximation of hyperbolic tangent activation function using hybrid methods
title_full Approximation of hyperbolic tangent activation function using hybrid methods
title_fullStr Approximation of hyperbolic tangent activation function using hybrid methods
title_full_unstemmed Approximation of hyperbolic tangent activation function using hybrid methods
title_sort Approximation of hyperbolic tangent activation function using hybrid methods
author Sartin, Maicon A.
author_facet Sartin, Maicon A.
Da Silva, Alexandre C.R. [UNESP]
author_role author
author2 Da Silva, Alexandre C.R. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade do Estado de Mato Grosso (UNEMAT)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Sartin, Maicon A.
Da Silva, Alexandre C.R. [UNESP]
dc.subject.por.fl_str_mv activation function
FPGA
Hybrid Methods
hyperbolic tangent
Activation functions
Hybrid method
Hyperbolic tangent
Nonlinear activation functions
Nonlinear functions
Nonlinear problems
Reconfigurable devices
System architectures
Communication
Field programmable gate arrays (FPGA)
Hyperbolic functions
Neural networks
Reconfigurable hardware
topic activation function
FPGA
Hybrid Methods
hyperbolic tangent
Activation functions
Hybrid method
Hyperbolic tangent
Nonlinear activation functions
Nonlinear functions
Nonlinear problems
Reconfigurable devices
System architectures
Communication
Field programmable gate arrays (FPGA)
Hyperbolic functions
Neural networks
Reconfigurable hardware
description Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-16
2014-05-27T11:30:41Z
2014-05-27T11:30:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ReCoSoC.2013.6581545
2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013.
http://hdl.handle.net/11449/76564
10.1109/ReCoSoC.2013.6581545
2-s2.0-84883659156
url http://dx.doi.org/10.1109/ReCoSoC.2013.6581545
http://hdl.handle.net/11449/76564
identifier_str_mv 2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013.
10.1109/ReCoSoC.2013.6581545
2-s2.0-84883659156
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484414832181248