Approximation of hyperbolic tangent activation function using hybrid methods
Main Author: | |
---|---|
Publication Date: | 2013 |
Other Authors: | |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1109/ReCoSoC.2013.6581545 http://hdl.handle.net/11449/76564 |
Summary: | Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE. |
id |
UNSP_c09013bfd0f306e4da23c0f605683c1a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/76564 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Approximation of hyperbolic tangent activation function using hybrid methodsactivation functionFPGAHybrid Methodshyperbolic tangentActivation functionsHybrid methodHyperbolic tangentNonlinear activation functionsNonlinear functionsNonlinear problemsReconfigurable devicesSystem architecturesCommunicationField programmable gate arrays (FPGA)Hyperbolic functionsNeural networksReconfigurable hardwareArtificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.Department of Computing UNEMAT - Universidade Do Estado de Mato Grosso, Colider, MTDepartment of Electrical Engineering UNESP - Universidade Estadual Paulista, Ilha Solteira, SPDepartment of Electrical Engineering UNESP - Universidade Estadual Paulista, Ilha Solteira, SPUniversidade do Estado de Mato Grosso (UNEMAT)Universidade Estadual Paulista (Unesp)Sartin, Maicon A.Da Silva, Alexandre C.R. [UNESP]2014-05-27T11:30:41Z2014-05-27T11:30:41Z2013-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ReCoSoC.2013.65815452013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013.http://hdl.handle.net/11449/7656410.1109/ReCoSoC.2013.65815452-s2.0-84883659156Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013info:eu-repo/semantics/openAccess2024-07-04T19:11:39Zoai:repositorio.unesp.br:11449/76564Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-04T19:11:39Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Approximation of hyperbolic tangent activation function using hybrid methods |
title |
Approximation of hyperbolic tangent activation function using hybrid methods |
spellingShingle |
Approximation of hyperbolic tangent activation function using hybrid methods Sartin, Maicon A. activation function FPGA Hybrid Methods hyperbolic tangent Activation functions Hybrid method Hyperbolic tangent Nonlinear activation functions Nonlinear functions Nonlinear problems Reconfigurable devices System architectures Communication Field programmable gate arrays (FPGA) Hyperbolic functions Neural networks Reconfigurable hardware |
title_short |
Approximation of hyperbolic tangent activation function using hybrid methods |
title_full |
Approximation of hyperbolic tangent activation function using hybrid methods |
title_fullStr |
Approximation of hyperbolic tangent activation function using hybrid methods |
title_full_unstemmed |
Approximation of hyperbolic tangent activation function using hybrid methods |
title_sort |
Approximation of hyperbolic tangent activation function using hybrid methods |
author |
Sartin, Maicon A. |
author_facet |
Sartin, Maicon A. Da Silva, Alexandre C.R. [UNESP] |
author_role |
author |
author2 |
Da Silva, Alexandre C.R. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Estado de Mato Grosso (UNEMAT) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Sartin, Maicon A. Da Silva, Alexandre C.R. [UNESP] |
dc.subject.por.fl_str_mv |
activation function FPGA Hybrid Methods hyperbolic tangent Activation functions Hybrid method Hyperbolic tangent Nonlinear activation functions Nonlinear functions Nonlinear problems Reconfigurable devices System architectures Communication Field programmable gate arrays (FPGA) Hyperbolic functions Neural networks Reconfigurable hardware |
topic |
activation function FPGA Hybrid Methods hyperbolic tangent Activation functions Hybrid method Hyperbolic tangent Nonlinear activation functions Nonlinear functions Nonlinear problems Reconfigurable devices System architectures Communication Field programmable gate arrays (FPGA) Hyperbolic functions Neural networks Reconfigurable hardware |
description |
Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09-16 2014-05-27T11:30:41Z 2014-05-27T11:30:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ReCoSoC.2013.6581545 2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013. http://hdl.handle.net/11449/76564 10.1109/ReCoSoC.2013.6581545 2-s2.0-84883659156 |
url |
http://dx.doi.org/10.1109/ReCoSoC.2013.6581545 http://hdl.handle.net/11449/76564 |
identifier_str_mv |
2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013. 10.1109/ReCoSoC.2013.6581545 2-s2.0-84883659156 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834484414832181248 |