Data-driven Dirichlet sampling on manifolds for structural health monitoring
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1007/s40430-024-04986-9 https://hdl.handle.net/11449/309289 |
Resumo: | The practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes. |
| id |
UNSP_badf9941a0c85f2278195ba184e29f92 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/309289 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Data-driven Dirichlet sampling on manifolds for structural health monitoringDamage detectionData augmentationData-drivenDirichlet distributionSampling on manifoldsThe practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Mechanical Engineering Universidade Estadual Paulista (UNESP), SPDepartment of Mechanical Engineering Universidade Federal do Rio de Janeiro (UFRJ), RJDepartment of Mechanical Engineering Universidade Estadual Paulista (UNESP), SPCNPq: 302378/2022-7CNPq: 306526/2019-0Universidade Estadual Paulista (UNESP)Universidade Federal do Rio de Janeiro (UFRJ)da Silva, Samuel [UNESP]Ritto, Thiago G.2025-04-29T20:15:01Z2024-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40430-024-04986-9Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 46, n. 7, 2024.1806-36911678-5878https://hdl.handle.net/11449/30928910.1007/s40430-024-04986-92-s2.0-85195363644Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of the Brazilian Society of Mechanical Sciences and Engineeringinfo:eu-repo/semantics/openAccess2025-04-30T13:33:50Zoai:repositorio.unesp.br:11449/309289Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:33:50Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Data-driven Dirichlet sampling on manifolds for structural health monitoring |
| title |
Data-driven Dirichlet sampling on manifolds for structural health monitoring |
| spellingShingle |
Data-driven Dirichlet sampling on manifolds for structural health monitoring da Silva, Samuel [UNESP] Damage detection Data augmentation Data-driven Dirichlet distribution Sampling on manifolds |
| title_short |
Data-driven Dirichlet sampling on manifolds for structural health monitoring |
| title_full |
Data-driven Dirichlet sampling on manifolds for structural health monitoring |
| title_fullStr |
Data-driven Dirichlet sampling on manifolds for structural health monitoring |
| title_full_unstemmed |
Data-driven Dirichlet sampling on manifolds for structural health monitoring |
| title_sort |
Data-driven Dirichlet sampling on manifolds for structural health monitoring |
| author |
da Silva, Samuel [UNESP] |
| author_facet |
da Silva, Samuel [UNESP] Ritto, Thiago G. |
| author_role |
author |
| author2 |
Ritto, Thiago G. |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Federal do Rio de Janeiro (UFRJ) |
| dc.contributor.author.fl_str_mv |
da Silva, Samuel [UNESP] Ritto, Thiago G. |
| dc.subject.por.fl_str_mv |
Damage detection Data augmentation Data-driven Dirichlet distribution Sampling on manifolds |
| topic |
Damage detection Data augmentation Data-driven Dirichlet distribution Sampling on manifolds |
| description |
The practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-07-01 2025-04-29T20:15:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40430-024-04986-9 Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 46, n. 7, 2024. 1806-3691 1678-5878 https://hdl.handle.net/11449/309289 10.1007/s40430-024-04986-9 2-s2.0-85195363644 |
| url |
http://dx.doi.org/10.1007/s40430-024-04986-9 https://hdl.handle.net/11449/309289 |
| identifier_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 46, n. 7, 2024. 1806-3691 1678-5878 10.1007/s40430-024-04986-9 2-s2.0-85195363644 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834482842643464192 |