Data-driven Dirichlet sampling on manifolds for structural health monitoring

Detalhes bibliográficos
Autor(a) principal: da Silva, Samuel [UNESP]
Data de Publicação: 2024
Outros Autores: Ritto, Thiago G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s40430-024-04986-9
https://hdl.handle.net/11449/309289
Resumo: The practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes.
id UNSP_badf9941a0c85f2278195ba184e29f92
oai_identifier_str oai:repositorio.unesp.br:11449/309289
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Data-driven Dirichlet sampling on manifolds for structural health monitoringDamage detectionData augmentationData-drivenDirichlet distributionSampling on manifoldsThe practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Mechanical Engineering Universidade Estadual Paulista (UNESP), SPDepartment of Mechanical Engineering Universidade Federal do Rio de Janeiro (UFRJ), RJDepartment of Mechanical Engineering Universidade Estadual Paulista (UNESP), SPCNPq: 302378/2022-7CNPq: 306526/2019-0Universidade Estadual Paulista (UNESP)Universidade Federal do Rio de Janeiro (UFRJ)da Silva, Samuel [UNESP]Ritto, Thiago G.2025-04-29T20:15:01Z2024-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40430-024-04986-9Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 46, n. 7, 2024.1806-36911678-5878https://hdl.handle.net/11449/30928910.1007/s40430-024-04986-92-s2.0-85195363644Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of the Brazilian Society of Mechanical Sciences and Engineeringinfo:eu-repo/semantics/openAccess2025-04-30T13:33:50Zoai:repositorio.unesp.br:11449/309289Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:33:50Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Data-driven Dirichlet sampling on manifolds for structural health monitoring
title Data-driven Dirichlet sampling on manifolds for structural health monitoring
spellingShingle Data-driven Dirichlet sampling on manifolds for structural health monitoring
da Silva, Samuel [UNESP]
Damage detection
Data augmentation
Data-driven
Dirichlet distribution
Sampling on manifolds
title_short Data-driven Dirichlet sampling on manifolds for structural health monitoring
title_full Data-driven Dirichlet sampling on manifolds for structural health monitoring
title_fullStr Data-driven Dirichlet sampling on manifolds for structural health monitoring
title_full_unstemmed Data-driven Dirichlet sampling on manifolds for structural health monitoring
title_sort Data-driven Dirichlet sampling on manifolds for structural health monitoring
author da Silva, Samuel [UNESP]
author_facet da Silva, Samuel [UNESP]
Ritto, Thiago G.
author_role author
author2 Ritto, Thiago G.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.author.fl_str_mv da Silva, Samuel [UNESP]
Ritto, Thiago G.
dc.subject.por.fl_str_mv Damage detection
Data augmentation
Data-driven
Dirichlet distribution
Sampling on manifolds
topic Damage detection
Data augmentation
Data-driven
Dirichlet distribution
Sampling on manifolds
description The practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-01
2025-04-29T20:15:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40430-024-04986-9
Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 46, n. 7, 2024.
1806-3691
1678-5878
https://hdl.handle.net/11449/309289
10.1007/s40430-024-04986-9
2-s2.0-85195363644
url http://dx.doi.org/10.1007/s40430-024-04986-9
https://hdl.handle.net/11449/309289
identifier_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 46, n. 7, 2024.
1806-3691
1678-5878
10.1007/s40430-024-04986-9
2-s2.0-85195363644
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482842643464192