ZCR-aided neurocomputing: A study with applications
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2016 |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1016/j.knosys.2016.05.011 http://hdl.handle.net/11449/178039 |
Resumo: | This paper covers a particular area of interest in pattern recognition and knowledge-based systems (PRKbS), being intended for both young researchers and academic professionals who are looking for a polished and refined material. Its aim, playing the role of a tutorial that introduces three feature extraction (FE) approaches based on zero-crossing rates (ZCRs), is to offer cutting-edge algorithms in which clarity and creativity are predominant. The theory, smoothly shown and accompanied by numerical examples, innovatively characterises ZCRs as being neurocomputing agents. Source-codes in C/C++ programming language and interesting applications on speech segmentation, image border extraction and biomedical signal analysis complement the text. |
| id |
UNSP_b7d857498b6fe94d0bce7b1af9ddaf84 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/178039 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
ZCR-aided neurocomputing: A study with applicationsBiomedical signal analysisFeature extraction (FE)Image border extractionPattern recognition and knowledge-based systems (PRKbS)Speech segmentationZero-crossing rates (ZCRs)This paper covers a particular area of interest in pattern recognition and knowledge-based systems (PRKbS), being intended for both young researchers and academic professionals who are looking for a polished and refined material. Its aim, playing the role of a tutorial that introduces three feature extraction (FE) approaches based on zero-crossing rates (ZCRs), is to offer cutting-edge algorithms in which clarity and creativity are predominant. The theory, smoothly shown and accompanied by numerical examples, innovatively characterises ZCRs as being neurocomputing agents. Source-codes in C/C++ programming language and interesting applications on speech segmentation, image border extraction and biomedical signal analysis complement the text.Instituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd NazarethInstituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd NazarethUniversidade Estadual Paulista (Unesp)Guido, Rodrigo Capobianco [UNESP]2018-12-11T17:28:19Z2018-12-11T17:28:19Z2016-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article248-269application/pdfhttp://dx.doi.org/10.1016/j.knosys.2016.05.011Knowledge-Based Systems, v. 105, p. 248-269.0950-7051http://hdl.handle.net/11449/17803910.1016/j.knosys.2016.05.0112-s2.0-849699445142-s2.0-84969944514.pdf65420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengKnowledge-Based Systems1,378info:eu-repo/semantics/openAccess2024-10-25T14:47:58Zoai:repositorio.unesp.br:11449/178039Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-10-25T14:47:58Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
ZCR-aided neurocomputing: A study with applications |
| title |
ZCR-aided neurocomputing: A study with applications |
| spellingShingle |
ZCR-aided neurocomputing: A study with applications Guido, Rodrigo Capobianco [UNESP] Biomedical signal analysis Feature extraction (FE) Image border extraction Pattern recognition and knowledge-based systems (PRKbS) Speech segmentation Zero-crossing rates (ZCRs) |
| title_short |
ZCR-aided neurocomputing: A study with applications |
| title_full |
ZCR-aided neurocomputing: A study with applications |
| title_fullStr |
ZCR-aided neurocomputing: A study with applications |
| title_full_unstemmed |
ZCR-aided neurocomputing: A study with applications |
| title_sort |
ZCR-aided neurocomputing: A study with applications |
| author |
Guido, Rodrigo Capobianco [UNESP] |
| author_facet |
Guido, Rodrigo Capobianco [UNESP] |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
| dc.contributor.author.fl_str_mv |
Guido, Rodrigo Capobianco [UNESP] |
| dc.subject.por.fl_str_mv |
Biomedical signal analysis Feature extraction (FE) Image border extraction Pattern recognition and knowledge-based systems (PRKbS) Speech segmentation Zero-crossing rates (ZCRs) |
| topic |
Biomedical signal analysis Feature extraction (FE) Image border extraction Pattern recognition and knowledge-based systems (PRKbS) Speech segmentation Zero-crossing rates (ZCRs) |
| description |
This paper covers a particular area of interest in pattern recognition and knowledge-based systems (PRKbS), being intended for both young researchers and academic professionals who are looking for a polished and refined material. Its aim, playing the role of a tutorial that introduces three feature extraction (FE) approaches based on zero-crossing rates (ZCRs), is to offer cutting-edge algorithms in which clarity and creativity are predominant. The theory, smoothly shown and accompanied by numerical examples, innovatively characterises ZCRs as being neurocomputing agents. Source-codes in C/C++ programming language and interesting applications on speech segmentation, image border extraction and biomedical signal analysis complement the text. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-08-01 2018-12-11T17:28:19Z 2018-12-11T17:28:19Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.knosys.2016.05.011 Knowledge-Based Systems, v. 105, p. 248-269. 0950-7051 http://hdl.handle.net/11449/178039 10.1016/j.knosys.2016.05.011 2-s2.0-84969944514 2-s2.0-84969944514.pdf 6542086226808067 0000-0002-0924-8024 |
| url |
http://dx.doi.org/10.1016/j.knosys.2016.05.011 http://hdl.handle.net/11449/178039 |
| identifier_str_mv |
Knowledge-Based Systems, v. 105, p. 248-269. 0950-7051 10.1016/j.knosys.2016.05.011 2-s2.0-84969944514 2-s2.0-84969944514.pdf 6542086226808067 0000-0002-0924-8024 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Knowledge-Based Systems 1,378 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
248-269 application/pdf |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834483681112096768 |