Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]

Bibliographic Details
Main Author: Leonel, Edson D. [UNESP]
Publication Date: 2015
Other Authors: Teixeira, Rivania M.N., Rando, Danilo S. [UNESP], Costa Filho, R. N., De Oliveira, Juliano A. [UNESP]
Format: Other
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1016/j.physleta.2015.05.002
http://hdl.handle.net/11449/167924
Summary: An analytical description of the convergence to the stationary state in period doubling bifurcations for a family of one-dimensional logistic-like mappings is made. As reported in [1], at a bifurcation point, the convergence to the fixed point is described by a scaling function with well defined critical exponents. Near the bifurcation, the convergence is characterized by an exponential decay with the relaxation time given by a power law of μ=R - Rc where Rc is the bifurcation parameter. We found here the exponents α, β, z and δ analytically, confirming our numerical simulations shown in [1].
id UNSP_b4b01e2e91fd9f4df566093a16e611d0
oai_identifier_str oai:repositorio.unesp.br:11449/167924
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]Critical exponentsHomogeneous functionScaling lawAn analytical description of the convergence to the stationary state in period doubling bifurcations for a family of one-dimensional logistic-like mappings is made. As reported in [1], at a bifurcation point, the convergence to the fixed point is described by a scaling function with well defined critical exponents. Near the bifurcation, the convergence is characterized by an exponential decay with the relaxation time given by a power law of μ=R - Rc where Rc is the bifurcation parameter. We found here the exponents α, β, z and δ analytically, confirming our numerical simulations shown in [1].Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515 - Bela VistaAbdus Salam International Center for Theoretical Physics, Strada Costiera 11Departamento de Física UFC - Univ. Federal Do CearáUNESP - Univ Estadual Paulista Câmpus de São João da Boa VistaDepartamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515 - Bela VistaUNESP - Univ Estadual Paulista Câmpus de São João da Boa VistaFAPESP: 2012/23688-5Universidade Estadual Paulista (Unesp)Abdus Salam International Center for Theoretical PhysicsUFC - Univ. Federal Do CearáLeonel, Edson D. [UNESP]Teixeira, Rivania M.N.Rando, Danilo S. [UNESP]Costa Filho, R. N.De Oliveira, Juliano A. [UNESP]2018-12-11T16:38:53Z2018-12-11T16:38:53Z2015-05-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/other1796-1798application/pdfhttp://dx.doi.org/10.1016/j.physleta.2015.05.002Physics Letters, Section A: General, Atomic and Solid State Physics, v. 379, n. 30-31, p. 1796-1798, 2015.0375-9601http://hdl.handle.net/11449/16792410.1016/j.physleta.2015.05.0022-s2.0-849377586442-s2.0-84937758644.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysics Letters, Section A: General, Atomic and Solid State Physics0,595info:eu-repo/semantics/openAccess2025-04-03T15:37:09Zoai:repositorio.unesp.br:11449/167924Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-03T15:37:09Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
title Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
spellingShingle Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
Leonel, Edson D. [UNESP]
Critical exponents
Homogeneous function
Scaling law
title_short Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
title_full Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
title_fullStr Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
title_full_unstemmed Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
title_sort Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]
author Leonel, Edson D. [UNESP]
author_facet Leonel, Edson D. [UNESP]
Teixeira, Rivania M.N.
Rando, Danilo S. [UNESP]
Costa Filho, R. N.
De Oliveira, Juliano A. [UNESP]
author_role author
author2 Teixeira, Rivania M.N.
Rando, Danilo S. [UNESP]
Costa Filho, R. N.
De Oliveira, Juliano A. [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Abdus Salam International Center for Theoretical Physics
UFC - Univ. Federal Do Ceará
dc.contributor.author.fl_str_mv Leonel, Edson D. [UNESP]
Teixeira, Rivania M.N.
Rando, Danilo S. [UNESP]
Costa Filho, R. N.
De Oliveira, Juliano A. [UNESP]
dc.subject.por.fl_str_mv Critical exponents
Homogeneous function
Scaling law
topic Critical exponents
Homogeneous function
Scaling law
description An analytical description of the convergence to the stationary state in period doubling bifurcations for a family of one-dimensional logistic-like mappings is made. As reported in [1], at a bifurcation point, the convergence to the fixed point is described by a scaling function with well defined critical exponents. Near the bifurcation, the convergence is characterized by an exponential decay with the relaxation time given by a power law of μ=R - Rc where Rc is the bifurcation parameter. We found here the exponents α, β, z and δ analytically, confirming our numerical simulations shown in [1].
publishDate 2015
dc.date.none.fl_str_mv 2015-05-16
2018-12-11T16:38:53Z
2018-12-11T16:38:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physleta.2015.05.002
Physics Letters, Section A: General, Atomic and Solid State Physics, v. 379, n. 30-31, p. 1796-1798, 2015.
0375-9601
http://hdl.handle.net/11449/167924
10.1016/j.physleta.2015.05.002
2-s2.0-84937758644
2-s2.0-84937758644.pdf
url http://dx.doi.org/10.1016/j.physleta.2015.05.002
http://hdl.handle.net/11449/167924
identifier_str_mv Physics Letters, Section A: General, Atomic and Solid State Physics, v. 379, n. 30-31, p. 1796-1798, 2015.
0375-9601
10.1016/j.physleta.2015.05.002
2-s2.0-84937758644
2-s2.0-84937758644.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physics Letters, Section A: General, Atomic and Solid State Physics
0,595
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1796-1798
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482743496409088