Energy bands and Wannier functions of the fractional Kronig-Penney model
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da UNESP |
| Download full: | http://dx.doi.org/10.1016/j.amc.2020.125266 http://hdl.handle.net/11449/201692 |
Summary: | Energy bands and Wannier functions of the fractional Schrödinger equation with a periodic potential are calculated. The kinetic energy contains a Riesz derivative of order α, with 1 < α ≤ 2, and numerical results are obtained for the Kronig-Penney model. Bloch and Wannier functions show cusps in real space that become sharper as α decreases. Energy bands and Bloch functions are smooth in reciprocal space, except at the Γ point. Depending on symmetry, each Wannier function decays as a power-law with exponent −(α+1) or −(α+2). Closed forms of their asymptotic behaviors are given. Each higher band displays anomalous behavior as a function of potential strength. It first narrows, becoming almost flat, then widens, with its width tending to a constant. The position uncertainty of each Wannier function follows a similar trend. |
| id |
UNSP_a90e5e56c91cc5bcbd427a99dc4f223c |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/201692 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Energy bands and Wannier functions of the fractional Kronig-Penney modelasymptotic behaviorFractional Schrödinger equationRiesz fractional derivativeSymmetryWannier functionEnergy bands and Wannier functions of the fractional Schrödinger equation with a periodic potential are calculated. The kinetic energy contains a Riesz derivative of order α, with 1 < α ≤ 2, and numerical results are obtained for the Kronig-Penney model. Bloch and Wannier functions show cusps in real space that become sharper as α decreases. Energy bands and Bloch functions are smooth in reciprocal space, except at the Γ point. Depending on symmetry, each Wannier function decays as a power-law with exponent −(α+1) or −(α+2). Closed forms of their asymptotic behaviors are given. Each higher band displays anomalous behavior as a function of potential strength. It first narrows, becoming almost flat, then widens, with its width tending to a constant. The position uncertainty of each Wannier function follows a similar trend.Programa de Pós-Graduação em Ciência e Tecnologia de Materiais UNESP - Universidade Estadual PaulistaEscola de Educação Básica da Universidade Federal de Uberlândia (ESEBA/UFU), 38400-785, UberlândiaDepartamento de Matemática UNESP - Universidade Estadual PaulistaPrograma de Pós-Graduação em Ciência e Tecnologia de Materiais UNESP - Universidade Estadual PaulistaDepartamento de Matemática UNESP - Universidade Estadual PaulistaUniversidade Estadual Paulista (Unesp)Universidade Federal de Uberlândia (UFU)Vellasco-Gomes, Arianne [UNESP]de Figueiredo Camargo, Rubens [UNESP]Bruno-Alfonso, Alexys [UNESP]2020-12-12T02:39:15Z2020-12-12T02:39:15Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.amc.2020.125266Applied Mathematics and Computation, v. 380.0096-3003http://hdl.handle.net/11449/20169210.1016/j.amc.2020.1252662-s2.0-85083462607Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics and Computationinfo:eu-repo/semantics/openAccess2024-04-29T14:59:42Zoai:repositorio.unesp.br:11449/201692Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-29T14:59:42Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Energy bands and Wannier functions of the fractional Kronig-Penney model |
| title |
Energy bands and Wannier functions of the fractional Kronig-Penney model |
| spellingShingle |
Energy bands and Wannier functions of the fractional Kronig-Penney model Vellasco-Gomes, Arianne [UNESP] asymptotic behavior Fractional Schrödinger equation Riesz fractional derivative Symmetry Wannier function |
| title_short |
Energy bands and Wannier functions of the fractional Kronig-Penney model |
| title_full |
Energy bands and Wannier functions of the fractional Kronig-Penney model |
| title_fullStr |
Energy bands and Wannier functions of the fractional Kronig-Penney model |
| title_full_unstemmed |
Energy bands and Wannier functions of the fractional Kronig-Penney model |
| title_sort |
Energy bands and Wannier functions of the fractional Kronig-Penney model |
| author |
Vellasco-Gomes, Arianne [UNESP] |
| author_facet |
Vellasco-Gomes, Arianne [UNESP] de Figueiredo Camargo, Rubens [UNESP] Bruno-Alfonso, Alexys [UNESP] |
| author_role |
author |
| author2 |
de Figueiredo Camargo, Rubens [UNESP] Bruno-Alfonso, Alexys [UNESP] |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de Uberlândia (UFU) |
| dc.contributor.author.fl_str_mv |
Vellasco-Gomes, Arianne [UNESP] de Figueiredo Camargo, Rubens [UNESP] Bruno-Alfonso, Alexys [UNESP] |
| dc.subject.por.fl_str_mv |
asymptotic behavior Fractional Schrödinger equation Riesz fractional derivative Symmetry Wannier function |
| topic |
asymptotic behavior Fractional Schrödinger equation Riesz fractional derivative Symmetry Wannier function |
| description |
Energy bands and Wannier functions of the fractional Schrödinger equation with a periodic potential are calculated. The kinetic energy contains a Riesz derivative of order α, with 1 < α ≤ 2, and numerical results are obtained for the Kronig-Penney model. Bloch and Wannier functions show cusps in real space that become sharper as α decreases. Energy bands and Bloch functions are smooth in reciprocal space, except at the Γ point. Depending on symmetry, each Wannier function decays as a power-law with exponent −(α+1) or −(α+2). Closed forms of their asymptotic behaviors are given. Each higher band displays anomalous behavior as a function of potential strength. It first narrows, becoming almost flat, then widens, with its width tending to a constant. The position uncertainty of each Wannier function follows a similar trend. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12-12T02:39:15Z 2020-12-12T02:39:15Z 2020-09-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.amc.2020.125266 Applied Mathematics and Computation, v. 380. 0096-3003 http://hdl.handle.net/11449/201692 10.1016/j.amc.2020.125266 2-s2.0-85083462607 |
| url |
http://dx.doi.org/10.1016/j.amc.2020.125266 http://hdl.handle.net/11449/201692 |
| identifier_str_mv |
Applied Mathematics and Computation, v. 380. 0096-3003 10.1016/j.amc.2020.125266 2-s2.0-85083462607 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Applied Mathematics and Computation |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834483444551254016 |