Energy bands and Wannier functions of the fractional Kronig-Penney model

Bibliographic Details
Main Author: Vellasco-Gomes, Arianne [UNESP]
Publication Date: 2020
Other Authors: de Figueiredo Camargo, Rubens [UNESP], Bruno-Alfonso, Alexys [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1016/j.amc.2020.125266
http://hdl.handle.net/11449/201692
Summary: Energy bands and Wannier functions of the fractional Schrödinger equation with a periodic potential are calculated. The kinetic energy contains a Riesz derivative of order α, with 1 < α ≤ 2, and numerical results are obtained for the Kronig-Penney model. Bloch and Wannier functions show cusps in real space that become sharper as α decreases. Energy bands and Bloch functions are smooth in reciprocal space, except at the Γ point. Depending on symmetry, each Wannier function decays as a power-law with exponent −(α+1) or −(α+2). Closed forms of their asymptotic behaviors are given. Each higher band displays anomalous behavior as a function of potential strength. It first narrows, becoming almost flat, then widens, with its width tending to a constant. The position uncertainty of each Wannier function follows a similar trend.
id UNSP_a90e5e56c91cc5bcbd427a99dc4f223c
oai_identifier_str oai:repositorio.unesp.br:11449/201692
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Energy bands and Wannier functions of the fractional Kronig-Penney modelasymptotic behaviorFractional Schrödinger equationRiesz fractional derivativeSymmetryWannier functionEnergy bands and Wannier functions of the fractional Schrödinger equation with a periodic potential are calculated. The kinetic energy contains a Riesz derivative of order α, with 1 < α ≤ 2, and numerical results are obtained for the Kronig-Penney model. Bloch and Wannier functions show cusps in real space that become sharper as α decreases. Energy bands and Bloch functions are smooth in reciprocal space, except at the Γ point. Depending on symmetry, each Wannier function decays as a power-law with exponent −(α+1) or −(α+2). Closed forms of their asymptotic behaviors are given. Each higher band displays anomalous behavior as a function of potential strength. It first narrows, becoming almost flat, then widens, with its width tending to a constant. The position uncertainty of each Wannier function follows a similar trend.Programa de Pós-Graduação em Ciência e Tecnologia de Materiais UNESP - Universidade Estadual PaulistaEscola de Educação Básica da Universidade Federal de Uberlândia (ESEBA/UFU), 38400-785, UberlândiaDepartamento de Matemática UNESP - Universidade Estadual PaulistaPrograma de Pós-Graduação em Ciência e Tecnologia de Materiais UNESP - Universidade Estadual PaulistaDepartamento de Matemática UNESP - Universidade Estadual PaulistaUniversidade Estadual Paulista (Unesp)Universidade Federal de Uberlândia (UFU)Vellasco-Gomes, Arianne [UNESP]de Figueiredo Camargo, Rubens [UNESP]Bruno-Alfonso, Alexys [UNESP]2020-12-12T02:39:15Z2020-12-12T02:39:15Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.amc.2020.125266Applied Mathematics and Computation, v. 380.0096-3003http://hdl.handle.net/11449/20169210.1016/j.amc.2020.1252662-s2.0-85083462607Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics and Computationinfo:eu-repo/semantics/openAccess2024-04-29T14:59:42Zoai:repositorio.unesp.br:11449/201692Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-29T14:59:42Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Energy bands and Wannier functions of the fractional Kronig-Penney model
title Energy bands and Wannier functions of the fractional Kronig-Penney model
spellingShingle Energy bands and Wannier functions of the fractional Kronig-Penney model
Vellasco-Gomes, Arianne [UNESP]
asymptotic behavior
Fractional Schrödinger equation
Riesz fractional derivative
Symmetry
Wannier function
title_short Energy bands and Wannier functions of the fractional Kronig-Penney model
title_full Energy bands and Wannier functions of the fractional Kronig-Penney model
title_fullStr Energy bands and Wannier functions of the fractional Kronig-Penney model
title_full_unstemmed Energy bands and Wannier functions of the fractional Kronig-Penney model
title_sort Energy bands and Wannier functions of the fractional Kronig-Penney model
author Vellasco-Gomes, Arianne [UNESP]
author_facet Vellasco-Gomes, Arianne [UNESP]
de Figueiredo Camargo, Rubens [UNESP]
Bruno-Alfonso, Alexys [UNESP]
author_role author
author2 de Figueiredo Camargo, Rubens [UNESP]
Bruno-Alfonso, Alexys [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de Uberlândia (UFU)
dc.contributor.author.fl_str_mv Vellasco-Gomes, Arianne [UNESP]
de Figueiredo Camargo, Rubens [UNESP]
Bruno-Alfonso, Alexys [UNESP]
dc.subject.por.fl_str_mv asymptotic behavior
Fractional Schrödinger equation
Riesz fractional derivative
Symmetry
Wannier function
topic asymptotic behavior
Fractional Schrödinger equation
Riesz fractional derivative
Symmetry
Wannier function
description Energy bands and Wannier functions of the fractional Schrödinger equation with a periodic potential are calculated. The kinetic energy contains a Riesz derivative of order α, with 1 < α ≤ 2, and numerical results are obtained for the Kronig-Penney model. Bloch and Wannier functions show cusps in real space that become sharper as α decreases. Energy bands and Bloch functions are smooth in reciprocal space, except at the Γ point. Depending on symmetry, each Wannier function decays as a power-law with exponent −(α+1) or −(α+2). Closed forms of their asymptotic behaviors are given. Each higher band displays anomalous behavior as a function of potential strength. It first narrows, becoming almost flat, then widens, with its width tending to a constant. The position uncertainty of each Wannier function follows a similar trend.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:39:15Z
2020-12-12T02:39:15Z
2020-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.amc.2020.125266
Applied Mathematics and Computation, v. 380.
0096-3003
http://hdl.handle.net/11449/201692
10.1016/j.amc.2020.125266
2-s2.0-85083462607
url http://dx.doi.org/10.1016/j.amc.2020.125266
http://hdl.handle.net/11449/201692
identifier_str_mv Applied Mathematics and Computation, v. 380.
0096-3003
10.1016/j.amc.2020.125266
2-s2.0-85083462607
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Mathematics and Computation
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483444551254016