Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas

Bibliographic Details
Main Author: Gervaes, Guilherme
Publication Date: 2021
Format: Bachelor thesis
Language: por
Source: Repositório Institucional da UNESP
Download full: http://hdl.handle.net/11449/216091
Summary: Feature extraction and the method utilized for data processing are fundamental parts of the digital image classification process. Therefore, in this work, the classification capacity of a convolutional neural network was observed when curvelet coefficients extracted from histological images were added to the original histological images, in contexts of colorectal cancer, non-Hodgkin lymphomas, breast cancer and liver tissue of mice of both genders and at different stages of life in order to observe the best combinations of histological images and curvelet coefficients in the classification process. In the feature extraction step, curvelet coefficients of histological images were obtained and sub-images composed of these coefficients were generated. The classification, performed by the pre-trained residual convolutional neural network ResNet50, used the images obtained in the feature extraction step combined with the classification using only histological images. The most promising results were observed when the sub-images generated from the coefficients were added to the original histological images, producing results up to 10.70% superior in accuracy and 25% superior in precision when compared to those observed in the classification using only histological images. The combination of the original histological images with the sub-images generated from the curvelet coefficients presents a relevant contribution for researchers interested in the development of computer-aided systems that help professionals in decision-making in the domains presented in the work.
id UNSP_a8788ad5a437f61000f00b9bd513b2a9
oai_identifier_str oai:repositorio.unesp.br:11449/216091
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicasCurvelet transform exploration with convolutional neural networks to classification of histological imagesFeature extractionCurvelet transformExtração de característicasTransformada curveletResNet50Feature extraction and the method utilized for data processing are fundamental parts of the digital image classification process. Therefore, in this work, the classification capacity of a convolutional neural network was observed when curvelet coefficients extracted from histological images were added to the original histological images, in contexts of colorectal cancer, non-Hodgkin lymphomas, breast cancer and liver tissue of mice of both genders and at different stages of life in order to observe the best combinations of histological images and curvelet coefficients in the classification process. In the feature extraction step, curvelet coefficients of histological images were obtained and sub-images composed of these coefficients were generated. The classification, performed by the pre-trained residual convolutional neural network ResNet50, used the images obtained in the feature extraction step combined with the classification using only histological images. The most promising results were observed when the sub-images generated from the coefficients were added to the original histological images, producing results up to 10.70% superior in accuracy and 25% superior in precision when compared to those observed in the classification using only histological images. The combination of the original histological images with the sub-images generated from the curvelet coefficients presents a relevant contribution for researchers interested in the development of computer-aided systems that help professionals in decision-making in the domains presented in the work.A extração de características e o método utilizado para processamento dos dados são partes fundamentais do processo de classificação de imagens digitais. Portanto, neste trabalho, foi observada a capacidade de classificação de uma rede neural convolucional quando adicionados coeficientes curvelet extraídos de imagens histológicas às imagens histológicas originais, em contextos de câncer colorretal, linfomas Não-Hodgkin, câncer de mama e tecido do fígado de ratos de ambos os gêneros e em diferentes estágios de vida, com objetivo de observar as melhores combinações de imagens histológicas e coeficientes curvelet no processo de classificação. Na etapa de extração de características foram obtidos os coeficientes curvelet das imagens histológicas e geradas sub-imagens compostas por esses coeficientes. A classificação, realizada pelo modelo pré-treinado da rede neural convolucional residual ResNet50, utilizou as imagens obtidas na extração de características combinadas às imagens histológicas e o desempenho foi comparado com a classificação utilizando apenas imagens histológicas. Os resultados mais promissores foram observados quando as sub-imagens geradas a partir dos coeficientes foram adicionadas às imagens histológicas originais, produzindo resultados até 10,70% superiores em acurácia e 25% superiores em precisão quando comparados aos observados na classificação utilizando somente imagens histológicas. A combinação das imagens histológicas originais com as sub-imagens geradas a partir dos coeficientes curvelet apresenta contribuição relevante para pesquisadores que se interessam pelo desenvolvimento de sistemas de apoio a diagnóstico que auxiliem profissionais na tomada de decisão nos domínios apresentados no trabalho.Não recebi financiamentoUniversidade Estadual Paulista (Unesp)Neves, Leandro Alves [UNESP]Universidade Estadual Paulista (Unesp)Gervaes, Guilherme2022-01-26T18:42:46Z2022-01-26T18:42:46Z2021-12-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttp://hdl.handle.net/11449/216091porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-12-11T18:58:37Zoai:repositorio.unesp.br:11449/216091Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-12-11T18:58:37Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas
Curvelet transform exploration with convolutional neural networks to classification of histological images
title Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas
spellingShingle Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas
Gervaes, Guilherme
Feature extraction
Curvelet transform
Extração de características
Transformada curvelet
ResNet50
title_short Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas
title_full Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas
title_fullStr Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas
title_full_unstemmed Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas
title_sort Exploração de transformada Curvelet com redes neurais convolucionais para classificação de imagens histológicas
author Gervaes, Guilherme
author_facet Gervaes, Guilherme
author_role author
dc.contributor.none.fl_str_mv Neves, Leandro Alves [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Gervaes, Guilherme
dc.subject.por.fl_str_mv Feature extraction
Curvelet transform
Extração de características
Transformada curvelet
ResNet50
topic Feature extraction
Curvelet transform
Extração de características
Transformada curvelet
ResNet50
description Feature extraction and the method utilized for data processing are fundamental parts of the digital image classification process. Therefore, in this work, the classification capacity of a convolutional neural network was observed when curvelet coefficients extracted from histological images were added to the original histological images, in contexts of colorectal cancer, non-Hodgkin lymphomas, breast cancer and liver tissue of mice of both genders and at different stages of life in order to observe the best combinations of histological images and curvelet coefficients in the classification process. In the feature extraction step, curvelet coefficients of histological images were obtained and sub-images composed of these coefficients were generated. The classification, performed by the pre-trained residual convolutional neural network ResNet50, used the images obtained in the feature extraction step combined with the classification using only histological images. The most promising results were observed when the sub-images generated from the coefficients were added to the original histological images, producing results up to 10.70% superior in accuracy and 25% superior in precision when compared to those observed in the classification using only histological images. The combination of the original histological images with the sub-images generated from the curvelet coefficients presents a relevant contribution for researchers interested in the development of computer-aided systems that help professionals in decision-making in the domains presented in the work.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-06
2022-01-26T18:42:46Z
2022-01-26T18:42:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/216091
url http://hdl.handle.net/11449/216091
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483144102772736