Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://www.ufrgs.br/igeo/pesquisas/37-2.html http://hdl.handle.net/11449/72193 |
Resumo: | The growth of large cities is usually accelerated and disorganized, which causes social, economical and infrastructural conflicts and frequently, occupation in illegal areas. For a better administration of these areas, the public manager needs information about their location. This information can be obtained through land utilization and land cover maps, where orbital images of remote sensing are used as one of the most traditional sources of data. In this context, the present work tested the applicability of the object-based classification to categorize two slum areas, taking into account the structure of the streets, size of the huts, distance between the houses, among other parameters. These area combinations of physical aspects were analyzed using the image IKONOS II and the software eCognition. Slum areas tend to be, to the contrary of the planned areas, disarranged, with narrow streets, small houses built with a variety of materials and without definition of blocks. The results of land cover classification for slum areas are encouraging because they are accurate and little ambiguous in the classification process. Thus, it would allow its utilization by urban managers. |
id |
UNSP_a3eee29cef8e1dfc9137ffc35e3b45b5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72193 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objetoClassification of slum areas using ikonos images: Viability of using the object-based classification approacheCognitionIKONOS II imagesObject-based classificationSlumsThe growth of large cities is usually accelerated and disorganized, which causes social, economical and infrastructural conflicts and frequently, occupation in illegal areas. For a better administration of these areas, the public manager needs information about their location. This information can be obtained through land utilization and land cover maps, where orbital images of remote sensing are used as one of the most traditional sources of data. In this context, the present work tested the applicability of the object-based classification to categorize two slum areas, taking into account the structure of the streets, size of the huts, distance between the houses, among other parameters. These area combinations of physical aspects were analyzed using the image IKONOS II and the software eCognition. Slum areas tend to be, to the contrary of the planned areas, disarranged, with narrow streets, small houses built with a variety of materials and without definition of blocks. The results of land cover classification for slum areas are encouraging because they are accurate and little ambiguous in the classification process. Thus, it would allow its utilization by urban managers.Departamento de Cartografia Faculdade de Ciências e Tecnologia Universidade Estadual Paulista, Rua Roberto Simonsen, 305, CEP 19.060-900, Presidente Prudente, São PauloDepartamento de Cartografia Faculdade de Ciências e Tecnologia Universidade Estadual Paulista, Rua Roberto Simonsen, 305, CEP 19.060-900, Presidente Prudente, São PauloUniversidade Estadual Paulista (Unesp)Estevam, Eliane A. [UNESP]Silva, Erivaldo Antonio da [UNESP]2014-05-27T11:25:25Z2014-05-27T11:25:25Z2010-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article133-142application/pdfhttp://www.ufrgs.br/igeo/pesquisas/37-2.htmlPesquisas em Geociencias, v. 37, n. 2, p. 133-142, 2010.1518-23981807-9806http://hdl.handle.net/11449/721932-s2.0-798514984972-s2.0-79851498497.pdf0000-0002-7069-0479Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporPesquisas em Geociencias0,152info:eu-repo/semantics/openAccess2024-06-18T15:01:10Zoai:repositorio.unesp.br:11449/72193Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-18T15:01:10Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto Classification of slum areas using ikonos images: Viability of using the object-based classification approach |
title |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto |
spellingShingle |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto Estevam, Eliane A. [UNESP] eCognition IKONOS II images Object-based classification Slums |
title_short |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto |
title_full |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto |
title_fullStr |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto |
title_full_unstemmed |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto |
title_sort |
Classificação de áreas de favelas a partir de imagens IKONOS: Viabilidade de uso de uma abordagem orientada a objeto |
author |
Estevam, Eliane A. [UNESP] |
author_facet |
Estevam, Eliane A. [UNESP] Silva, Erivaldo Antonio da [UNESP] |
author_role |
author |
author2 |
Silva, Erivaldo Antonio da [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Estevam, Eliane A. [UNESP] Silva, Erivaldo Antonio da [UNESP] |
dc.subject.por.fl_str_mv |
eCognition IKONOS II images Object-based classification Slums |
topic |
eCognition IKONOS II images Object-based classification Slums |
description |
The growth of large cities is usually accelerated and disorganized, which causes social, economical and infrastructural conflicts and frequently, occupation in illegal areas. For a better administration of these areas, the public manager needs information about their location. This information can be obtained through land utilization and land cover maps, where orbital images of remote sensing are used as one of the most traditional sources of data. In this context, the present work tested the applicability of the object-based classification to categorize two slum areas, taking into account the structure of the streets, size of the huts, distance between the houses, among other parameters. These area combinations of physical aspects were analyzed using the image IKONOS II and the software eCognition. Slum areas tend to be, to the contrary of the planned areas, disarranged, with narrow streets, small houses built with a variety of materials and without definition of blocks. The results of land cover classification for slum areas are encouraging because they are accurate and little ambiguous in the classification process. Thus, it would allow its utilization by urban managers. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12-01 2014-05-27T11:25:25Z 2014-05-27T11:25:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.ufrgs.br/igeo/pesquisas/37-2.html Pesquisas em Geociencias, v. 37, n. 2, p. 133-142, 2010. 1518-2398 1807-9806 http://hdl.handle.net/11449/72193 2-s2.0-79851498497 2-s2.0-79851498497.pdf 0000-0002-7069-0479 |
url |
http://www.ufrgs.br/igeo/pesquisas/37-2.html http://hdl.handle.net/11449/72193 |
identifier_str_mv |
Pesquisas em Geociencias, v. 37, n. 2, p. 133-142, 2010. 1518-2398 1807-9806 2-s2.0-79851498497 2-s2.0-79851498497.pdf 0000-0002-7069-0479 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Pesquisas em Geociencias 0,152 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
133-142 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483168923615232 |