Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing

Bibliographic Details
Main Author: Lopes, Thiago Glissoi [UNESP]
Publication Date: 2024
Format: Doctoral thesis
Language: eng
Source: Repositório Institucional da UNESP
Download full: https://hdl.handle.net/11449/258339
http://lattes.cnpq.br/5963545027959566
http://lattes.cnpq.br/1455400309660081
http://lattes.cnpq.br/8166874558095198
Summary: The Fused Deposition Modeling process, also known as Fused Filament Fabrication (FFF), involves building three-dimensional objects through the successive layering of molten plastic filaments. Despite its extensive use, monitoring and diagnosing this process remains complex, requiring sophisticated methods to ensure high quality and efficiency. The first layer in the FFF process is very important, as it serves as the foundation for the entire 3D printed object. This layer sets the base for subsequent layers, influencing the overall print quality, dimensional accuracy, and structural integrity of the final product. This makes the first layer a focus for FFF process monitoring studies, given that if any defect could be detected during this fabrication, the fabrication process can be canceled avoiding further losses. The present thesis addresses signifi-cant gaps in the current body of research on FFF process monitoring by integrating advanced signal processing methods with computational intelligence tools. By utilizing an electret micro-phone mounted on the extruder, the research performs comprehensive signal processing and feature extraction, including spectral analysis, Root Mean Square (RMS) values, Ratio of Power (ROP), Counts statistic, Kurtosis, and Skewness. The use of machine learning algorithms, par-ticularly Support Vector Machine (SVM) and Neural Networks, enhances the system's classifi-cation and diagnostic capabilities. Spectral analysis was pivotal in identifying frequency values linked to defects and in extracting features that effectively distinguished between different ma-chine states. The implementation of machine learning algorithms, notably SVM, achieved an outstanding 100% accuracy in classifying normal and irregular machine conditions based on the extracted features. The thesis also details the development of the fff_segmenter script. This innovative and Free and Open Source Software (FOSS) tool automates the segmentation of monitoring acoustic signals using control signals from the X and Y stepper motor axes and the signal's sampling rate, significantly reducing errors and time consumption associated with man-ual segmentation methods. The script’s segmentation results can be easily into other MATLAB or Octave applications. In conclusion, this thesis presents a comprehensive framework for en-hancing the monitoring and diagnostic capabilities of the FFF process. By integrating low-cost sensors such as the electret microphone, advanced signal processing, machine learning, and open-source tools, it provides a clear framework for FFF monitoring, paving the way for future advancements in additive manufacturing.
id UNSP_8b00198b260d6d37e7086ccc3f2939c7
oai_identifier_str oai:repositorio.unesp.br:11449/258339
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processingMonitoramento da técnica de fabricação aditiva por modelagem por deposição fundida: uma nova abordagem utilizando microfone de eletreto e processamento de sinaisFabricação por Filamento FundidoMonitoramento de ProcessosSegmentação de SinaisFused Filament FabricationProcess MonitoringSignal SegmentationThe Fused Deposition Modeling process, also known as Fused Filament Fabrication (FFF), involves building three-dimensional objects through the successive layering of molten plastic filaments. Despite its extensive use, monitoring and diagnosing this process remains complex, requiring sophisticated methods to ensure high quality and efficiency. The first layer in the FFF process is very important, as it serves as the foundation for the entire 3D printed object. This layer sets the base for subsequent layers, influencing the overall print quality, dimensional accuracy, and structural integrity of the final product. This makes the first layer a focus for FFF process monitoring studies, given that if any defect could be detected during this fabrication, the fabrication process can be canceled avoiding further losses. The present thesis addresses signifi-cant gaps in the current body of research on FFF process monitoring by integrating advanced signal processing methods with computational intelligence tools. By utilizing an electret micro-phone mounted on the extruder, the research performs comprehensive signal processing and feature extraction, including spectral analysis, Root Mean Square (RMS) values, Ratio of Power (ROP), Counts statistic, Kurtosis, and Skewness. The use of machine learning algorithms, par-ticularly Support Vector Machine (SVM) and Neural Networks, enhances the system's classifi-cation and diagnostic capabilities. Spectral analysis was pivotal in identifying frequency values linked to defects and in extracting features that effectively distinguished between different ma-chine states. The implementation of machine learning algorithms, notably SVM, achieved an outstanding 100% accuracy in classifying normal and irregular machine conditions based on the extracted features. The thesis also details the development of the fff_segmenter script. This innovative and Free and Open Source Software (FOSS) tool automates the segmentation of monitoring acoustic signals using control signals from the X and Y stepper motor axes and the signal's sampling rate, significantly reducing errors and time consumption associated with man-ual segmentation methods. The script’s segmentation results can be easily into other MATLAB or Octave applications. In conclusion, this thesis presents a comprehensive framework for en-hancing the monitoring and diagnostic capabilities of the FFF process. By integrating low-cost sensors such as the electret microphone, advanced signal processing, machine learning, and open-source tools, it provides a clear framework for FFF monitoring, paving the way for future advancements in additive manufacturing.O processo de Modelagem por Deposição Fundida, também conhecido como Fabri-cação por Filamento Fundido (FFF), envolve a construção de objetos tridimensionais por meio da deposição sucessiva de filamentos plásticos derretidos. Apesar de seu uso extensivo, monito-rar e diagnosticar esse processo continua complexo, exigindo métodos sofisticados para garantir alta qualidade e eficiência. A primeira camada no processo FFF é muito importante, pois serve como a base para todo o objeto impresso em 3D. Esta camada estabelece a fundação para as camadas subsequentes, influenciando a qualidade geral da impressão, a precisão dimensional e a integridade estrutural do produto final. Isso faz da primeira camada um foco para estudos de monitoramento do processo FFF, considerando que, se qualquer defeito puder ser detectado durante essa fase de fabricação, o processo pode ser cancelado, evitando perdas adicionais. A presente tese aborda lacunas significativas na literatura atual sobre monitoramento do processo FFF, integrando métodos avançados de processamento de sinais com ferramentas de inteligência computacional. Utilizando um microfone eletreto montado no extrusor, a pesquisa realiza um processamento abrangente de sinais e extração de características, incluindo análise espectral, valores de Root Mean Square (RMS), Ratio of Power (ROP), estatística de contagens, curtose e assimetria. O uso de algoritmos de aprendizado de máquina, particularmente a Máquina de Ve-tores de Suporte (SVM) e Redes Neurais, aprimora as capacidades de classificação e diagnósti-co do sistema. A análise espectral foi fundamental na identificação de valores de frequência as-sociados a defeitos e na extração de características que distinguiram efetivamente diferentes es-tados da máquina. A implementação de algoritmos de aprendizado de máquina, notavelmente o SVM, alcançou uma precisão excepcional de 100% na classificação de condições normais e irregulares da máquina com base nas características extraídas. A tese também detalha o desen-volvimento do script fff_segmenter. Esta ferramenta inovadora, de Software Livre e de Código Aberto (FOSS), automatiza a segmentação de sinais acústicos de monitoramento usando sinais de controle dos eixos dos motores de passo X e Y e a taxa de amostragem do sinal, re-duzindo significativamente os erros e o tempo consumido pelos métodos de segmentação manu-al. Os resultados da segmentação do script podem ser facilmente integrados a outras aplicações do MATLAB ou Octave. Em conclusão, esta tese apresenta um quadro abrangente para apri-morar as capacidades de monitoramento e diagnóstico do processo FFF. Ao integrar sensores de baixo custo, como o microfone eletreto, processamento avançado de sinais, aprendizado de máquina e ferramentas de código aberto, ela fornece uma estrutura clara para o monitoramento do FFF, abrindo caminho para futuros avanços na manufatura aditiva.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Capes: 001Universidade Estadual Paulista (Unesp)Aguiar, Paulo Roberto de [UNESP]Universidade Estadual Paulista (UNESP)Universidade Estadual Paulista (Unesp)França, Thiago Valle [UNESP]Oliveira Junior, Pedro ConceiçãoLopes, Thiago Glissoi [UNESP]2024-11-26T13:40:47Z2024-11-26T13:40:47Z2024-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfLOPES, Thiago Glissoi. Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing. Orientador: Paulo Roberto de Aguiar. 2024. 130 f. Tese (Doutorado em Engenharia Elétrica) - Faculdade de Engenharia, Universidade Estadual Paulista (UNESP), Bauru, 2024.https://hdl.handle.net/11449/25833933004056087P2http://lattes.cnpq.br/5963545027959566http://lattes.cnpq.br/1455400309660081http://lattes.cnpq.br/81668745580951980000-0002-8860-27480000-0002-9934-4465enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-11-26T15:14:02Zoai:repositorio.unesp.br:11449/258339Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-26T15:14:02Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing
Monitoramento da técnica de fabricação aditiva por modelagem por deposição fundida: uma nova abordagem utilizando microfone de eletreto e processamento de sinais
title Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing
spellingShingle Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing
Lopes, Thiago Glissoi [UNESP]
Fabricação por Filamento Fundido
Monitoramento de Processos
Segmentação de Sinais
Fused Filament Fabrication
Process Monitoring
Signal Segmentation
title_short Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing
title_full Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing
title_fullStr Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing
title_full_unstemmed Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing
title_sort Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing
author Lopes, Thiago Glissoi [UNESP]
author_facet Lopes, Thiago Glissoi [UNESP]
author_role author
dc.contributor.none.fl_str_mv Aguiar, Paulo Roberto de [UNESP]
Universidade Estadual Paulista (UNESP)
Universidade Estadual Paulista (Unesp)
França, Thiago Valle [UNESP]
Oliveira Junior, Pedro Conceição
dc.contributor.author.fl_str_mv Lopes, Thiago Glissoi [UNESP]
dc.subject.por.fl_str_mv Fabricação por Filamento Fundido
Monitoramento de Processos
Segmentação de Sinais
Fused Filament Fabrication
Process Monitoring
Signal Segmentation
topic Fabricação por Filamento Fundido
Monitoramento de Processos
Segmentação de Sinais
Fused Filament Fabrication
Process Monitoring
Signal Segmentation
description The Fused Deposition Modeling process, also known as Fused Filament Fabrication (FFF), involves building three-dimensional objects through the successive layering of molten plastic filaments. Despite its extensive use, monitoring and diagnosing this process remains complex, requiring sophisticated methods to ensure high quality and efficiency. The first layer in the FFF process is very important, as it serves as the foundation for the entire 3D printed object. This layer sets the base for subsequent layers, influencing the overall print quality, dimensional accuracy, and structural integrity of the final product. This makes the first layer a focus for FFF process monitoring studies, given that if any defect could be detected during this fabrication, the fabrication process can be canceled avoiding further losses. The present thesis addresses signifi-cant gaps in the current body of research on FFF process monitoring by integrating advanced signal processing methods with computational intelligence tools. By utilizing an electret micro-phone mounted on the extruder, the research performs comprehensive signal processing and feature extraction, including spectral analysis, Root Mean Square (RMS) values, Ratio of Power (ROP), Counts statistic, Kurtosis, and Skewness. The use of machine learning algorithms, par-ticularly Support Vector Machine (SVM) and Neural Networks, enhances the system's classifi-cation and diagnostic capabilities. Spectral analysis was pivotal in identifying frequency values linked to defects and in extracting features that effectively distinguished between different ma-chine states. The implementation of machine learning algorithms, notably SVM, achieved an outstanding 100% accuracy in classifying normal and irregular machine conditions based on the extracted features. The thesis also details the development of the fff_segmenter script. This innovative and Free and Open Source Software (FOSS) tool automates the segmentation of monitoring acoustic signals using control signals from the X and Y stepper motor axes and the signal's sampling rate, significantly reducing errors and time consumption associated with man-ual segmentation methods. The script’s segmentation results can be easily into other MATLAB or Octave applications. In conclusion, this thesis presents a comprehensive framework for en-hancing the monitoring and diagnostic capabilities of the FFF process. By integrating low-cost sensors such as the electret microphone, advanced signal processing, machine learning, and open-source tools, it provides a clear framework for FFF monitoring, paving the way for future advancements in additive manufacturing.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-26T13:40:47Z
2024-11-26T13:40:47Z
2024-10-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LOPES, Thiago Glissoi. Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing. Orientador: Paulo Roberto de Aguiar. 2024. 130 f. Tese (Doutorado em Engenharia Elétrica) - Faculdade de Engenharia, Universidade Estadual Paulista (UNESP), Bauru, 2024.
https://hdl.handle.net/11449/258339
33004056087P2
http://lattes.cnpq.br/5963545027959566
http://lattes.cnpq.br/1455400309660081
http://lattes.cnpq.br/8166874558095198
0000-0002-8860-2748
0000-0002-9934-4465
identifier_str_mv LOPES, Thiago Glissoi. Monitoring the additive manufacturing technique of fused deposition modelling: a new approach using electret microphone and signal processing. Orientador: Paulo Roberto de Aguiar. 2024. 130 f. Tese (Doutorado em Engenharia Elétrica) - Faculdade de Engenharia, Universidade Estadual Paulista (UNESP), Bauru, 2024.
33004056087P2
0000-0002-8860-2748
0000-0002-9934-4465
url https://hdl.handle.net/11449/258339
http://lattes.cnpq.br/5963545027959566
http://lattes.cnpq.br/1455400309660081
http://lattes.cnpq.br/8166874558095198
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483463349075968