Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2025 |
| Outros Autores: | , , , , , , , , , , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.3390/bios15020075 https://hdl.handle.net/11449/301094 |
Resumo: | Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva. |
| id |
UNSP_7b45a9db7af6aeb106bd5d920cd925f0 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/301094 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithmsartificial intelligencebio-inspired peptidesbiosensorsCOVID-19electrochemical detectionsalivary diagnosticsDeveloping affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Physiology Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart Innovation Center in Salivary Diagnostic and Nanobiotechnology Institute of Biomedical Sciences Federal University of Uberlandia (UFU), UberlândiaDepartment of Biological Sciences Laboratory of Bioinformatics and Computational Chemistry State University of Southwest of Bahia (UESB)Post-Graduation Program in Genetics and Biochemistry Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart Federal University of Uberlândia (UFU), Uberlâ, ndiaInstitute of Chemistry Federal University of Uberlândia (UFU)Institute of Biosciences Languages and Exact Sciences (Ibilce) São Paulo State University (Unesp)Laboratory of Antiviral Research Department of Microbiology Institute of Biomedical Sciences Federal University of Uberlandia (UFU), Uberlândia 38408-100Department of Pulmonology School of Medicine Federal University of Uberlandia (UFU)Faculty of Computing Federal University of Uberlandia (UFU)Institute of Biosciences Languages and Exact Sciences (Ibilce) São Paulo State University (Unesp)CNPq: #406840/2022-9CNPq: #465669/2014-0Universidade Federal de Uberlândia (UFU)State University of Southwest of Bahia (UESB)Universidade Estadual Paulista (UNESP)Garcia-Junior, Marcelo AugustoAndrade, Bruno SilvaLima, Ana PaulaSoares, Iara PereiraNotário, Ana Flávia OliveiraBernardino, Sttephany SilvaGuevara-Vega, Marco FidelHonório-Silva, GhabrielMunoz, Rodrigo Alejandro AbarzaJardim, Ana Carolina Gomes [UNESP]Martins, Mário MachadoGoulart, Luiz RicardoCunha, Thulio MarquezCarneiro, Murillo GuimarãesSabino-Silva, Robinson2025-04-29T18:57:12Z2025-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/bios15020075Biosensors, v. 15, n. 2, 2025.2079-6374https://hdl.handle.net/11449/30109410.3390/bios150200752-s2.0-85218471358Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiosensorsinfo:eu-repo/semantics/openAccess2025-04-30T13:37:04Zoai:repositorio.unesp.br:11449/301094Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:37:04Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms |
| title |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms |
| spellingShingle |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms Garcia-Junior, Marcelo Augusto artificial intelligence bio-inspired peptides biosensors COVID-19 electrochemical detection salivary diagnostics |
| title_short |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms |
| title_full |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms |
| title_fullStr |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms |
| title_full_unstemmed |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms |
| title_sort |
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms |
| author |
Garcia-Junior, Marcelo Augusto |
| author_facet |
Garcia-Junior, Marcelo Augusto Andrade, Bruno Silva Lima, Ana Paula Soares, Iara Pereira Notário, Ana Flávia Oliveira Bernardino, Sttephany Silva Guevara-Vega, Marco Fidel Honório-Silva, Ghabriel Munoz, Rodrigo Alejandro Abarza Jardim, Ana Carolina Gomes [UNESP] Martins, Mário Machado Goulart, Luiz Ricardo Cunha, Thulio Marquez Carneiro, Murillo Guimarães Sabino-Silva, Robinson |
| author_role |
author |
| author2 |
Andrade, Bruno Silva Lima, Ana Paula Soares, Iara Pereira Notário, Ana Flávia Oliveira Bernardino, Sttephany Silva Guevara-Vega, Marco Fidel Honório-Silva, Ghabriel Munoz, Rodrigo Alejandro Abarza Jardim, Ana Carolina Gomes [UNESP] Martins, Mário Machado Goulart, Luiz Ricardo Cunha, Thulio Marquez Carneiro, Murillo Guimarães Sabino-Silva, Robinson |
| author2_role |
author author author author author author author author author author author author author author |
| dc.contributor.none.fl_str_mv |
Universidade Federal de Uberlândia (UFU) State University of Southwest of Bahia (UESB) Universidade Estadual Paulista (UNESP) |
| dc.contributor.author.fl_str_mv |
Garcia-Junior, Marcelo Augusto Andrade, Bruno Silva Lima, Ana Paula Soares, Iara Pereira Notário, Ana Flávia Oliveira Bernardino, Sttephany Silva Guevara-Vega, Marco Fidel Honório-Silva, Ghabriel Munoz, Rodrigo Alejandro Abarza Jardim, Ana Carolina Gomes [UNESP] Martins, Mário Machado Goulart, Luiz Ricardo Cunha, Thulio Marquez Carneiro, Murillo Guimarães Sabino-Silva, Robinson |
| dc.subject.por.fl_str_mv |
artificial intelligence bio-inspired peptides biosensors COVID-19 electrochemical detection salivary diagnostics |
| topic |
artificial intelligence bio-inspired peptides biosensors COVID-19 electrochemical detection salivary diagnostics |
| description |
Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-29T18:57:12Z 2025-02-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/bios15020075 Biosensors, v. 15, n. 2, 2025. 2079-6374 https://hdl.handle.net/11449/301094 10.3390/bios15020075 2-s2.0-85218471358 |
| url |
http://dx.doi.org/10.3390/bios15020075 https://hdl.handle.net/11449/301094 |
| identifier_str_mv |
Biosensors, v. 15, n. 2, 2025. 2079-6374 10.3390/bios15020075 2-s2.0-85218471358 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Biosensors |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834482546225709056 |