Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms

Detalhes bibliográficos
Autor(a) principal: Garcia-Junior, Marcelo Augusto
Data de Publicação: 2025
Outros Autores: Andrade, Bruno Silva, Lima, Ana Paula, Soares, Iara Pereira, Notário, Ana Flávia Oliveira, Bernardino, Sttephany Silva, Guevara-Vega, Marco Fidel, Honório-Silva, Ghabriel, Munoz, Rodrigo Alejandro Abarza, Jardim, Ana Carolina Gomes [UNESP], Martins, Mário Machado, Goulart, Luiz Ricardo, Cunha, Thulio Marquez, Carneiro, Murillo Guimarães, Sabino-Silva, Robinson
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/bios15020075
https://hdl.handle.net/11449/301094
Resumo: Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.
id UNSP_7b45a9db7af6aeb106bd5d920cd925f0
oai_identifier_str oai:repositorio.unesp.br:11449/301094
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithmsartificial intelligencebio-inspired peptidesbiosensorsCOVID-19electrochemical detectionsalivary diagnosticsDeveloping affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Physiology Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart Innovation Center in Salivary Diagnostic and Nanobiotechnology Institute of Biomedical Sciences Federal University of Uberlandia (UFU), UberlândiaDepartment of Biological Sciences Laboratory of Bioinformatics and Computational Chemistry State University of Southwest of Bahia (UESB)Post-Graduation Program in Genetics and Biochemistry Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart Federal University of Uberlândia (UFU), Uberlâ, ndiaInstitute of Chemistry Federal University of Uberlândia (UFU)Institute of Biosciences Languages and Exact Sciences (Ibilce) São Paulo State University (Unesp)Laboratory of Antiviral Research Department of Microbiology Institute of Biomedical Sciences Federal University of Uberlandia (UFU), Uberlândia 38408-100Department of Pulmonology School of Medicine Federal University of Uberlandia (UFU)Faculty of Computing Federal University of Uberlandia (UFU)Institute of Biosciences Languages and Exact Sciences (Ibilce) São Paulo State University (Unesp)CNPq: #406840/2022-9CNPq: #465669/2014-0Universidade Federal de Uberlândia (UFU)State University of Southwest of Bahia (UESB)Universidade Estadual Paulista (UNESP)Garcia-Junior, Marcelo AugustoAndrade, Bruno SilvaLima, Ana PaulaSoares, Iara PereiraNotário, Ana Flávia OliveiraBernardino, Sttephany SilvaGuevara-Vega, Marco FidelHonório-Silva, GhabrielMunoz, Rodrigo Alejandro AbarzaJardim, Ana Carolina Gomes [UNESP]Martins, Mário MachadoGoulart, Luiz RicardoCunha, Thulio MarquezCarneiro, Murillo GuimarãesSabino-Silva, Robinson2025-04-29T18:57:12Z2025-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/bios15020075Biosensors, v. 15, n. 2, 2025.2079-6374https://hdl.handle.net/11449/30109410.3390/bios150200752-s2.0-85218471358Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiosensorsinfo:eu-repo/semantics/openAccess2025-04-30T13:37:04Zoai:repositorio.unesp.br:11449/301094Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:37:04Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
spellingShingle Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
Garcia-Junior, Marcelo Augusto
artificial intelligence
bio-inspired peptides
biosensors
COVID-19
electrochemical detection
salivary diagnostics
title_short Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_full Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_fullStr Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_full_unstemmed Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_sort Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
author Garcia-Junior, Marcelo Augusto
author_facet Garcia-Junior, Marcelo Augusto
Andrade, Bruno Silva
Lima, Ana Paula
Soares, Iara Pereira
Notário, Ana Flávia Oliveira
Bernardino, Sttephany Silva
Guevara-Vega, Marco Fidel
Honório-Silva, Ghabriel
Munoz, Rodrigo Alejandro Abarza
Jardim, Ana Carolina Gomes [UNESP]
Martins, Mário Machado
Goulart, Luiz Ricardo
Cunha, Thulio Marquez
Carneiro, Murillo Guimarães
Sabino-Silva, Robinson
author_role author
author2 Andrade, Bruno Silva
Lima, Ana Paula
Soares, Iara Pereira
Notário, Ana Flávia Oliveira
Bernardino, Sttephany Silva
Guevara-Vega, Marco Fidel
Honório-Silva, Ghabriel
Munoz, Rodrigo Alejandro Abarza
Jardim, Ana Carolina Gomes [UNESP]
Martins, Mário Machado
Goulart, Luiz Ricardo
Cunha, Thulio Marquez
Carneiro, Murillo Guimarães
Sabino-Silva, Robinson
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Uberlândia (UFU)
State University of Southwest of Bahia (UESB)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Garcia-Junior, Marcelo Augusto
Andrade, Bruno Silva
Lima, Ana Paula
Soares, Iara Pereira
Notário, Ana Flávia Oliveira
Bernardino, Sttephany Silva
Guevara-Vega, Marco Fidel
Honório-Silva, Ghabriel
Munoz, Rodrigo Alejandro Abarza
Jardim, Ana Carolina Gomes [UNESP]
Martins, Mário Machado
Goulart, Luiz Ricardo
Cunha, Thulio Marquez
Carneiro, Murillo Guimarães
Sabino-Silva, Robinson
dc.subject.por.fl_str_mv artificial intelligence
bio-inspired peptides
biosensors
COVID-19
electrochemical detection
salivary diagnostics
topic artificial intelligence
bio-inspired peptides
biosensors
COVID-19
electrochemical detection
salivary diagnostics
description Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-29T18:57:12Z
2025-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/bios15020075
Biosensors, v. 15, n. 2, 2025.
2079-6374
https://hdl.handle.net/11449/301094
10.3390/bios15020075
2-s2.0-85218471358
url http://dx.doi.org/10.3390/bios15020075
https://hdl.handle.net/11449/301094
identifier_str_mv Biosensors, v. 15, n. 2, 2025.
2079-6374
10.3390/bios15020075
2-s2.0-85218471358
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biosensors
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482546225709056