Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1007/s12215-023-00969-2 https://hdl.handle.net/11449/304399 |
Summary: | In this paper, we study some systems of elliptic PDEs involving the 1-Laplacian operator. In the first one, we deal with the subcritical regime, while in the second, we study a system with nonlinearities with critical growth. The approach is based on an approximation argument, in which the solutions are obtained as the limit of related problems with the p-Laplacian operator. In order to overcome the lack of compactness in the critical case, a version of the Concentration of Compactness Principle of Lions is proved. |
id |
UNSP_4b5c2e4c03398f34b9df6dfdbba99230 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/304399 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities1-Laplacian operator35J6235J75Critical nonlinearitiesElliptic systemsSpace of functions of bounded variationIn this paper, we study some systems of elliptic PDEs involving the 1-Laplacian operator. In the first one, we deal with the subcritical regime, while in the second, we study a system with nonlinearities with critical growth. The approach is based on an approximation argument, in which the solutions are obtained as the limit of related problems with the p-Laplacian operator. In order to overcome the lack of compactness in the critical case, a version of the Concentration of Compactness Principle of Lions is proved.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Matemática Intituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista - Unesp, SPDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista - Unesp, SPDepartamento de Matemática Intituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista - Unesp, SPDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista - Unesp, SPCAPES: 001FAPESP: 2021/04158-4CNPq: 304765/2021-0Universidade Estadual Paulista (UNESP)Carranza, Yino B. Cueva [UNESP]Pimenta, Marcos T. O. [UNESP]2025-04-29T19:34:49Z2024-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1037-1058http://dx.doi.org/10.1007/s12215-023-00969-2Rendiconti del Circolo Matematico di Palermo, v. 73, n. 3, p. 1037-1058, 2024.1973-44090009-725Xhttps://hdl.handle.net/11449/30439910.1007/s12215-023-00969-22-s2.0-85176777272Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRendiconti del Circolo Matematico di Palermoinfo:eu-repo/semantics/openAccess2025-04-30T13:52:46Zoai:repositorio.unesp.br:11449/304399Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:52:46Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities |
title |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities |
spellingShingle |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities Carranza, Yino B. Cueva [UNESP] 1-Laplacian operator 35J62 35J75 Critical nonlinearities Elliptic systems Space of functions of bounded variation |
title_short |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities |
title_full |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities |
title_fullStr |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities |
title_full_unstemmed |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities |
title_sort |
Quasilinear elliptic systems involving the 1-Laplacian operator with subcritical and critical nonlinearities |
author |
Carranza, Yino B. Cueva [UNESP] |
author_facet |
Carranza, Yino B. Cueva [UNESP] Pimenta, Marcos T. O. [UNESP] |
author_role |
author |
author2 |
Pimenta, Marcos T. O. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Carranza, Yino B. Cueva [UNESP] Pimenta, Marcos T. O. [UNESP] |
dc.subject.por.fl_str_mv |
1-Laplacian operator 35J62 35J75 Critical nonlinearities Elliptic systems Space of functions of bounded variation |
topic |
1-Laplacian operator 35J62 35J75 Critical nonlinearities Elliptic systems Space of functions of bounded variation |
description |
In this paper, we study some systems of elliptic PDEs involving the 1-Laplacian operator. In the first one, we deal with the subcritical regime, while in the second, we study a system with nonlinearities with critical growth. The approach is based on an approximation argument, in which the solutions are obtained as the limit of related problems with the p-Laplacian operator. In order to overcome the lack of compactness in the critical case, a version of the Concentration of Compactness Principle of Lions is proved. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-01 2025-04-29T19:34:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s12215-023-00969-2 Rendiconti del Circolo Matematico di Palermo, v. 73, n. 3, p. 1037-1058, 2024. 1973-4409 0009-725X https://hdl.handle.net/11449/304399 10.1007/s12215-023-00969-2 2-s2.0-85176777272 |
url |
http://dx.doi.org/10.1007/s12215-023-00969-2 https://hdl.handle.net/11449/304399 |
identifier_str_mv |
Rendiconti del Circolo Matematico di Palermo, v. 73, n. 3, p. 1037-1058, 2024. 1973-4409 0009-725X 10.1007/s12215-023-00969-2 2-s2.0-85176777272 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Rendiconti del Circolo Matematico di Palermo |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1037-1058 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482869037170688 |