A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic

Detalhes bibliográficos
Autor(a) principal: Souza, Renato William R. de
Data de Publicação: 2020
Outros Autores: Oliveira, Joao Vitor Chaves de, Passos, Leandro A. [UNESP], Ding, Weiping, Papa, Joao P. [UNESP], Albuquerque, Victor Hugo C. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TFUZZ.2019.2949771
http://hdl.handle.net/11449/210572
Resumo: In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.
id UNSP_3d039c061345cd486fb63ff6f0892044
oai_identifier_str oai:repositorio.unesp.br:11449/210572
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A Novel Approach for Optimum-Path Forest Classification Using Fuzzy LogicTrainingPrototypesForestryStandardsSupport vector machinesFuzzy logicClustering algorithmsClassifiersfuzzyoptimum-path forest (OPF)pattern recognitionIn the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Natural Science Foundation of ChinaNatural Science Foundation of Jiangsu ProvinceSix Talent Peaks Project of Jiangsu ProvinceQing Lan Project of Jiangsu ProvinceUniv Fortaleza, Grad Program Appl Informat, BR-60811905 Fortaleza, Ceara, BrazilPontificia Univ Catolica Rio de Janeiro, BR-22451900 Rio De Janeiro, BrazilPontifical Catholic Univ Rio de Janeiro, BR-22451900 Rio De Janeiro, BrazilSao Paulo State Univ, BR-01049010 Sao Paulo, BrazilNantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R ChinaSao Paulo State Univ, BR-01049010 Sao Paulo, BrazilCNPq: 304315/2017-6CNPq: 427968/2018-6CNPq: 430274/2018-1CNPq: 307066/2017-7FAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2017/25908-6FAPESP: 2018/21934-5FAPESP: 2016/19403-6National Natural Science Foundation of China: 61976120Natural Science Foundation of Jiangsu Province: BK20191445Six Talent Peaks Project of Jiangsu Province: XYDXXJS-048Ieee-inst Electrical Electronics Engineers IncUniv FortalezaPontificia Univ Catolica Rio de JaneiroPontifical Catholic Univ Rio de JaneiroUniversidade Estadual Paulista (Unesp)Nantong UnivSouza, Renato William R. deOliveira, Joao Vitor Chaves dePassos, Leandro A. [UNESP]Ding, WeipingPapa, Joao P. [UNESP]Albuquerque, Victor Hugo C. de2021-06-25T22:04:47Z2021-06-25T22:04:47Z2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3076-3086http://dx.doi.org/10.1109/TFUZZ.2019.2949771Ieee Transactions On Fuzzy Systems. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 3076-3086, 2020.1063-6706http://hdl.handle.net/11449/21057210.1109/TFUZZ.2019.2949771WOS:000595527100003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Transactions On Fuzzy Systemsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/210572Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
title A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
spellingShingle A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
Souza, Renato William R. de
Training
Prototypes
Forestry
Standards
Support vector machines
Fuzzy logic
Clustering algorithms
Classifiers
fuzzy
optimum-path forest (OPF)
pattern recognition
title_short A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
title_full A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
title_fullStr A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
title_full_unstemmed A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
title_sort A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
author Souza, Renato William R. de
author_facet Souza, Renato William R. de
Oliveira, Joao Vitor Chaves de
Passos, Leandro A. [UNESP]
Ding, Weiping
Papa, Joao P. [UNESP]
Albuquerque, Victor Hugo C. de
author_role author
author2 Oliveira, Joao Vitor Chaves de
Passos, Leandro A. [UNESP]
Ding, Weiping
Papa, Joao P. [UNESP]
Albuquerque, Victor Hugo C. de
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Fortaleza
Pontificia Univ Catolica Rio de Janeiro
Pontifical Catholic Univ Rio de Janeiro
Universidade Estadual Paulista (Unesp)
Nantong Univ
dc.contributor.author.fl_str_mv Souza, Renato William R. de
Oliveira, Joao Vitor Chaves de
Passos, Leandro A. [UNESP]
Ding, Weiping
Papa, Joao P. [UNESP]
Albuquerque, Victor Hugo C. de
dc.subject.por.fl_str_mv Training
Prototypes
Forestry
Standards
Support vector machines
Fuzzy logic
Clustering algorithms
Classifiers
fuzzy
optimum-path forest (OPF)
pattern recognition
topic Training
Prototypes
Forestry
Standards
Support vector machines
Fuzzy logic
Clustering algorithms
Classifiers
fuzzy
optimum-path forest (OPF)
pattern recognition
description In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01
2021-06-25T22:04:47Z
2021-06-25T22:04:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TFUZZ.2019.2949771
Ieee Transactions On Fuzzy Systems. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 3076-3086, 2020.
1063-6706
http://hdl.handle.net/11449/210572
10.1109/TFUZZ.2019.2949771
WOS:000595527100003
url http://dx.doi.org/10.1109/TFUZZ.2019.2949771
http://hdl.handle.net/11449/210572
identifier_str_mv Ieee Transactions On Fuzzy Systems. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 3076-3086, 2020.
1063-6706
10.1109/TFUZZ.2019.2949771
WOS:000595527100003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ieee Transactions On Fuzzy Systems
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 3076-3086
dc.publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484593213833216