A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2020 |
| Outros Autores: | , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1109/TFUZZ.2019.2949771 http://hdl.handle.net/11449/210572 |
Resumo: | In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios. |
| id |
UNSP_3d039c061345cd486fb63ff6f0892044 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/210572 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy LogicTrainingPrototypesForestryStandardsSupport vector machinesFuzzy logicClustering algorithmsClassifiersfuzzyoptimum-path forest (OPF)pattern recognitionIn the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Natural Science Foundation of ChinaNatural Science Foundation of Jiangsu ProvinceSix Talent Peaks Project of Jiangsu ProvinceQing Lan Project of Jiangsu ProvinceUniv Fortaleza, Grad Program Appl Informat, BR-60811905 Fortaleza, Ceara, BrazilPontificia Univ Catolica Rio de Janeiro, BR-22451900 Rio De Janeiro, BrazilPontifical Catholic Univ Rio de Janeiro, BR-22451900 Rio De Janeiro, BrazilSao Paulo State Univ, BR-01049010 Sao Paulo, BrazilNantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R ChinaSao Paulo State Univ, BR-01049010 Sao Paulo, BrazilCNPq: 304315/2017-6CNPq: 427968/2018-6CNPq: 430274/2018-1CNPq: 307066/2017-7FAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2017/25908-6FAPESP: 2018/21934-5FAPESP: 2016/19403-6National Natural Science Foundation of China: 61976120Natural Science Foundation of Jiangsu Province: BK20191445Six Talent Peaks Project of Jiangsu Province: XYDXXJS-048Ieee-inst Electrical Electronics Engineers IncUniv FortalezaPontificia Univ Catolica Rio de JaneiroPontifical Catholic Univ Rio de JaneiroUniversidade Estadual Paulista (Unesp)Nantong UnivSouza, Renato William R. deOliveira, Joao Vitor Chaves dePassos, Leandro A. [UNESP]Ding, WeipingPapa, Joao P. [UNESP]Albuquerque, Victor Hugo C. de2021-06-25T22:04:47Z2021-06-25T22:04:47Z2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3076-3086http://dx.doi.org/10.1109/TFUZZ.2019.2949771Ieee Transactions On Fuzzy Systems. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 3076-3086, 2020.1063-6706http://hdl.handle.net/11449/21057210.1109/TFUZZ.2019.2949771WOS:000595527100003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Transactions On Fuzzy Systemsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/210572Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic |
| title |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic |
| spellingShingle |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic Souza, Renato William R. de Training Prototypes Forestry Standards Support vector machines Fuzzy logic Clustering algorithms Classifiers fuzzy optimum-path forest (OPF) pattern recognition |
| title_short |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic |
| title_full |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic |
| title_fullStr |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic |
| title_full_unstemmed |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic |
| title_sort |
A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic |
| author |
Souza, Renato William R. de |
| author_facet |
Souza, Renato William R. de Oliveira, Joao Vitor Chaves de Passos, Leandro A. [UNESP] Ding, Weiping Papa, Joao P. [UNESP] Albuquerque, Victor Hugo C. de |
| author_role |
author |
| author2 |
Oliveira, Joao Vitor Chaves de Passos, Leandro A. [UNESP] Ding, Weiping Papa, Joao P. [UNESP] Albuquerque, Victor Hugo C. de |
| author2_role |
author author author author author |
| dc.contributor.none.fl_str_mv |
Univ Fortaleza Pontificia Univ Catolica Rio de Janeiro Pontifical Catholic Univ Rio de Janeiro Universidade Estadual Paulista (Unesp) Nantong Univ |
| dc.contributor.author.fl_str_mv |
Souza, Renato William R. de Oliveira, Joao Vitor Chaves de Passos, Leandro A. [UNESP] Ding, Weiping Papa, Joao P. [UNESP] Albuquerque, Victor Hugo C. de |
| dc.subject.por.fl_str_mv |
Training Prototypes Forestry Standards Support vector machines Fuzzy logic Clustering algorithms Classifiers fuzzy optimum-path forest (OPF) pattern recognition |
| topic |
Training Prototypes Forestry Standards Support vector machines Fuzzy logic Clustering algorithms Classifiers fuzzy optimum-path forest (OPF) pattern recognition |
| description |
In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12-01 2021-06-25T22:04:47Z 2021-06-25T22:04:47Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TFUZZ.2019.2949771 Ieee Transactions On Fuzzy Systems. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 3076-3086, 2020. 1063-6706 http://hdl.handle.net/11449/210572 10.1109/TFUZZ.2019.2949771 WOS:000595527100003 |
| url |
http://dx.doi.org/10.1109/TFUZZ.2019.2949771 http://hdl.handle.net/11449/210572 |
| identifier_str_mv |
Ieee Transactions On Fuzzy Systems. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 3076-3086, 2020. 1063-6706 10.1109/TFUZZ.2019.2949771 WOS:000595527100003 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Ieee Transactions On Fuzzy Systems |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
3076-3086 |
| dc.publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
| publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
| dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834484593213833216 |