Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST

Bibliographic Details
Main Author: Tomazi, Izabely Machado
Publication Date: 2024
Format: Master thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Download full: https://tede.unioeste.br/handle/tede/7465
Summary: The soybean crop is currently the main crop produced in Brazil, being responsible for a significant part of the national economy and generating income for producers. The use of remote sensing techniques contributes to achieving this context, because through its utilization producers can improve the use of their resources, generating greater profitability. Thus, the objective of this work was to estimate soybean yield using the technique of assimilation of agrometeorological data with the World Food Studies (WOFOST) crop growth model, at the field level for areas located in the municipalities of Castro and Piraí do Sul, state of Paraná. For this purpose, the WOFOST model was used associated with leaf area index data, from vegetation index calculations using Sentinel-2 satellite images, and climate data obtained through the NasaPower platform. The results show that spatial and soybean yield changes occur over the years. When comparing the estimated yield with the field yield, values of coefficient of determination (R²) of 0.5 and 0.6, RMSE of 679.36 and 346.95 kg ha-1 were obtained for the municipalities of Castro-PR and Piraí do Sul-PR, respectively. The accuracy of the model was calculated using the improved index of Willmott (2012) and presented satisfactory results for both municipalities, while for the evaluation of performance [Pi] the municipality of Castro-PR (Dr: 0.523; Pi: 0.369) was classified as tolerable and Piraí do Sul-PR (Dr: 0.700; Pi: 0.544) as good. The use of the WOFOST model allowed to estimate soybean yield at the pixel level, for plots of varying sizes of areas, providing results that allow further studies.
id UNIOESTE-1_942319d5efecbe0ef2a6985caa505aba
oai_identifier_str oai:tede.unioeste.br:tede/7465
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Becker, Willyan Ronaldohttp://lattes.cnpq.br/6173806880513817Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Paludo, Alexhttp://lattes.cnpq.br/3065593150601602Maggi, Marcio Furlanhttp://lattes.cnpq.br/8677221771738301Tomazi, Izabely Machado2025-01-08T13:03:28Z2024-06-10TOMAZI, Izabely Machado. Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST. 2024. 58 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - Paraná.https://tede.unioeste.br/handle/tede/7465The soybean crop is currently the main crop produced in Brazil, being responsible for a significant part of the national economy and generating income for producers. The use of remote sensing techniques contributes to achieving this context, because through its utilization producers can improve the use of their resources, generating greater profitability. Thus, the objective of this work was to estimate soybean yield using the technique of assimilation of agrometeorological data with the World Food Studies (WOFOST) crop growth model, at the field level for areas located in the municipalities of Castro and Piraí do Sul, state of Paraná. For this purpose, the WOFOST model was used associated with leaf area index data, from vegetation index calculations using Sentinel-2 satellite images, and climate data obtained through the NasaPower platform. The results show that spatial and soybean yield changes occur over the years. When comparing the estimated yield with the field yield, values of coefficient of determination (R²) of 0.5 and 0.6, RMSE of 679.36 and 346.95 kg ha-1 were obtained for the municipalities of Castro-PR and Piraí do Sul-PR, respectively. The accuracy of the model was calculated using the improved index of Willmott (2012) and presented satisfactory results for both municipalities, while for the evaluation of performance [Pi] the municipality of Castro-PR (Dr: 0.523; Pi: 0.369) was classified as tolerable and Piraí do Sul-PR (Dr: 0.700; Pi: 0.544) as good. The use of the WOFOST model allowed to estimate soybean yield at the pixel level, for plots of varying sizes of areas, providing results that allow further studies.A cultura da soja é atualmente a principal cultura produzida no Brasil, sendo responsável por movimentar uma parte significativa da economia nacional e gerar rendimento aos produtores. O uso de técnicas de sensoriamento remoto contribui para que este viés seja alcançado, pois por meio deste os produtores podem melhorar a utilização de seus recursos, gerando maior lucratividade. Em vista disto, o objetivo deste trabalho foi estimar a produtividade da soja com uso da técnica de assimilação de dados agrometeorológicos junto ao modelo de crescimento de cultura World Food Studies (WOFOST), a nível de talhões para áreas localizadas nos municípios de Castro e Piraí do Sul, Paraná. Para isto, utilizou-se o modelo WOFOST associado a dados de índice de área foliar, provenientes de cálculos do índice de vegetação usando imagens do satélite Sentinel-2, e dados climáticos obtidos através da plataforma NasaPower. Os resultados encontrados mostram que ocorrem mudanças espaciais e ao longo dos anos na produtividade da soja. Quando comparada a produtividade estimada com a produtividade de campo foram obtidos valores de coeficiente de determinação (R²) de 0,5 e 0,6, RMSE de 679,36 e 346,95 kg ha-1 para os municípios de Castro-PR e Piraí do Sul-PR, respectivamente. A acurácia do modelo foi calculada utilizando o índice melhorado de Willmott (2012) e apresentou resultados satisfatórios para ambos os municípios, enquanto para a avaliação do desempenho [Pi] o município de Castro-PR (Dr: 0,523; Pi: 0,369) foi classificado como tolerável e Piraí do Sul-PR (Dr: 0,700; Pi: 0,544) como bom. A utilização do modelo WOFOST permitiu estimar a produtividade da soja a nível de pixel, para talhões de variados tamanhos de áreas, proporcionando resultados que permitem demais estudos.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2025-01-08T13:03:28Z No. of bitstreams: 1 Izabely_M_Tomazi2024.pdf: 2875156 bytes, checksum: 2a984b2639ad0d959753a46b2f4c93e7 (MD5)Made available in DSpace on 2025-01-08T13:03:28Z (GMT). No. of bitstreams: 1 Izabely_M_Tomazi2024.pdf: 2875156 bytes, checksum: 2a984b2639ad0d959753a46b2f4c93e7 (MD5) Previous issue date: 2024-06-10Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGeoprocessamentoGoogle Earth EngineNasaPowerNDVIPythonGeoprocessingCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAEstimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOSTSoybean yield estimation using remote sensing spectro-agroclimatic data in the WOFOST modelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5347692450416052129600600600600221437444286838201591854457215887615552075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALIzabely_M_Tomazi2024.pdfIzabely_M_Tomazi2024.pdfapplication/pdf2875156http://tede.unioeste.br:8080/tede/bitstream/tede/7465/2/Izabely_M_Tomazi2024.pdf2a984b2639ad0d959753a46b2f4c93e7MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/7465/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/74652025-01-08 10:03:28.676oai:tede.unioeste.br:tede/7465Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2025-01-08T13:03:28Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
dc.title.alternative.eng.fl_str_mv Soybean yield estimation using remote sensing spectro-agroclimatic data in the WOFOST model
title Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
spellingShingle Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
Tomazi, Izabely Machado
Geoprocessamento
Google Earth Engine
NasaPower
NDVI
Python
Geoprocessing
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
title_full Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
title_fullStr Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
title_full_unstemmed Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
title_sort Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
author Tomazi, Izabely Machado
author_facet Tomazi, Izabely Machado
author_role author
dc.contributor.advisor1.fl_str_mv Johann, Jerry Adriani
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.advisor-co1.fl_str_mv Becker, Willyan Ronaldo
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6173806880513817
dc.contributor.referee1.fl_str_mv Johann, Jerry Adriani
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee2.fl_str_mv Paludo, Alex
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3065593150601602
dc.contributor.referee3.fl_str_mv Maggi, Marcio Furlan
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/8677221771738301
dc.contributor.author.fl_str_mv Tomazi, Izabely Machado
contributor_str_mv Johann, Jerry Adriani
Becker, Willyan Ronaldo
Johann, Jerry Adriani
Paludo, Alex
Maggi, Marcio Furlan
dc.subject.por.fl_str_mv Geoprocessamento
Google Earth Engine
NasaPower
NDVI
Python
topic Geoprocessamento
Google Earth Engine
NasaPower
NDVI
Python
Geoprocessing
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Geoprocessing
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description The soybean crop is currently the main crop produced in Brazil, being responsible for a significant part of the national economy and generating income for producers. The use of remote sensing techniques contributes to achieving this context, because through its utilization producers can improve the use of their resources, generating greater profitability. Thus, the objective of this work was to estimate soybean yield using the technique of assimilation of agrometeorological data with the World Food Studies (WOFOST) crop growth model, at the field level for areas located in the municipalities of Castro and Piraí do Sul, state of Paraná. For this purpose, the WOFOST model was used associated with leaf area index data, from vegetation index calculations using Sentinel-2 satellite images, and climate data obtained through the NasaPower platform. The results show that spatial and soybean yield changes occur over the years. When comparing the estimated yield with the field yield, values of coefficient of determination (R²) of 0.5 and 0.6, RMSE of 679.36 and 346.95 kg ha-1 were obtained for the municipalities of Castro-PR and Piraí do Sul-PR, respectively. The accuracy of the model was calculated using the improved index of Willmott (2012) and presented satisfactory results for both municipalities, while for the evaluation of performance [Pi] the municipality of Castro-PR (Dr: 0.523; Pi: 0.369) was classified as tolerable and Piraí do Sul-PR (Dr: 0.700; Pi: 0.544) as good. The use of the WOFOST model allowed to estimate soybean yield at the pixel level, for plots of varying sizes of areas, providing results that allow further studies.
publishDate 2024
dc.date.issued.fl_str_mv 2024-06-10
dc.date.accessioned.fl_str_mv 2025-01-08T13:03:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TOMAZI, Izabely Machado. Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST. 2024. 58 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - Paraná.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/7465
identifier_str_mv TOMAZI, Izabely Machado. Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST. 2024. 58 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - Paraná.
url https://tede.unioeste.br/handle/tede/7465
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/7465/2/Izabely_M_Tomazi2024.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/7465/1/license.txt
bitstream.checksum.fl_str_mv 2a984b2639ad0d959753a46b2f4c93e7
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1848092793830899712