Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Master thesis |
| Language: | por |
| Source: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| Download full: | https://tede.unioeste.br/handle/tede/7465 |
Summary: | The soybean crop is currently the main crop produced in Brazil, being responsible for a significant part of the national economy and generating income for producers. The use of remote sensing techniques contributes to achieving this context, because through its utilization producers can improve the use of their resources, generating greater profitability. Thus, the objective of this work was to estimate soybean yield using the technique of assimilation of agrometeorological data with the World Food Studies (WOFOST) crop growth model, at the field level for areas located in the municipalities of Castro and Piraí do Sul, state of Paraná. For this purpose, the WOFOST model was used associated with leaf area index data, from vegetation index calculations using Sentinel-2 satellite images, and climate data obtained through the NasaPower platform. The results show that spatial and soybean yield changes occur over the years. When comparing the estimated yield with the field yield, values of coefficient of determination (R²) of 0.5 and 0.6, RMSE of 679.36 and 346.95 kg ha-1 were obtained for the municipalities of Castro-PR and Piraí do Sul-PR, respectively. The accuracy of the model was calculated using the improved index of Willmott (2012) and presented satisfactory results for both municipalities, while for the evaluation of performance [Pi] the municipality of Castro-PR (Dr: 0.523; Pi: 0.369) was classified as tolerable and Piraí do Sul-PR (Dr: 0.700; Pi: 0.544) as good. The use of the WOFOST model allowed to estimate soybean yield at the pixel level, for plots of varying sizes of areas, providing results that allow further studies. |
| id |
UNIOESTE-1_942319d5efecbe0ef2a6985caa505aba |
|---|---|
| oai_identifier_str |
oai:tede.unioeste.br:tede/7465 |
| network_acronym_str |
UNIOESTE-1 |
| network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| repository_id_str |
|
| spelling |
Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Becker, Willyan Ronaldohttp://lattes.cnpq.br/6173806880513817Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Paludo, Alexhttp://lattes.cnpq.br/3065593150601602Maggi, Marcio Furlanhttp://lattes.cnpq.br/8677221771738301Tomazi, Izabely Machado2025-01-08T13:03:28Z2024-06-10TOMAZI, Izabely Machado. Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST. 2024. 58 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - Paraná.https://tede.unioeste.br/handle/tede/7465The soybean crop is currently the main crop produced in Brazil, being responsible for a significant part of the national economy and generating income for producers. The use of remote sensing techniques contributes to achieving this context, because through its utilization producers can improve the use of their resources, generating greater profitability. Thus, the objective of this work was to estimate soybean yield using the technique of assimilation of agrometeorological data with the World Food Studies (WOFOST) crop growth model, at the field level for areas located in the municipalities of Castro and Piraí do Sul, state of Paraná. For this purpose, the WOFOST model was used associated with leaf area index data, from vegetation index calculations using Sentinel-2 satellite images, and climate data obtained through the NasaPower platform. The results show that spatial and soybean yield changes occur over the years. When comparing the estimated yield with the field yield, values of coefficient of determination (R²) of 0.5 and 0.6, RMSE of 679.36 and 346.95 kg ha-1 were obtained for the municipalities of Castro-PR and Piraí do Sul-PR, respectively. The accuracy of the model was calculated using the improved index of Willmott (2012) and presented satisfactory results for both municipalities, while for the evaluation of performance [Pi] the municipality of Castro-PR (Dr: 0.523; Pi: 0.369) was classified as tolerable and Piraí do Sul-PR (Dr: 0.700; Pi: 0.544) as good. The use of the WOFOST model allowed to estimate soybean yield at the pixel level, for plots of varying sizes of areas, providing results that allow further studies.A cultura da soja é atualmente a principal cultura produzida no Brasil, sendo responsável por movimentar uma parte significativa da economia nacional e gerar rendimento aos produtores. O uso de técnicas de sensoriamento remoto contribui para que este viés seja alcançado, pois por meio deste os produtores podem melhorar a utilização de seus recursos, gerando maior lucratividade. Em vista disto, o objetivo deste trabalho foi estimar a produtividade da soja com uso da técnica de assimilação de dados agrometeorológicos junto ao modelo de crescimento de cultura World Food Studies (WOFOST), a nível de talhões para áreas localizadas nos municípios de Castro e Piraí do Sul, Paraná. Para isto, utilizou-se o modelo WOFOST associado a dados de índice de área foliar, provenientes de cálculos do índice de vegetação usando imagens do satélite Sentinel-2, e dados climáticos obtidos através da plataforma NasaPower. Os resultados encontrados mostram que ocorrem mudanças espaciais e ao longo dos anos na produtividade da soja. Quando comparada a produtividade estimada com a produtividade de campo foram obtidos valores de coeficiente de determinação (R²) de 0,5 e 0,6, RMSE de 679,36 e 346,95 kg ha-1 para os municípios de Castro-PR e Piraí do Sul-PR, respectivamente. A acurácia do modelo foi calculada utilizando o índice melhorado de Willmott (2012) e apresentou resultados satisfatórios para ambos os municípios, enquanto para a avaliação do desempenho [Pi] o município de Castro-PR (Dr: 0,523; Pi: 0,369) foi classificado como tolerável e Piraí do Sul-PR (Dr: 0,700; Pi: 0,544) como bom. A utilização do modelo WOFOST permitiu estimar a produtividade da soja a nível de pixel, para talhões de variados tamanhos de áreas, proporcionando resultados que permitem demais estudos.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2025-01-08T13:03:28Z No. of bitstreams: 1 Izabely_M_Tomazi2024.pdf: 2875156 bytes, checksum: 2a984b2639ad0d959753a46b2f4c93e7 (MD5)Made available in DSpace on 2025-01-08T13:03:28Z (GMT). No. of bitstreams: 1 Izabely_M_Tomazi2024.pdf: 2875156 bytes, checksum: 2a984b2639ad0d959753a46b2f4c93e7 (MD5) Previous issue date: 2024-06-10Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGeoprocessamentoGoogle Earth EngineNasaPowerNDVIPythonGeoprocessingCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAEstimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOSTSoybean yield estimation using remote sensing spectro-agroclimatic data in the WOFOST modelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5347692450416052129600600600600221437444286838201591854457215887615552075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALIzabely_M_Tomazi2024.pdfIzabely_M_Tomazi2024.pdfapplication/pdf2875156http://tede.unioeste.br:8080/tede/bitstream/tede/7465/2/Izabely_M_Tomazi2024.pdf2a984b2639ad0d959753a46b2f4c93e7MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/7465/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/74652025-01-08 10:03:28.676oai:tede.unioeste.br:tede/7465Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2025-01-08T13:03:28Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
| dc.title.por.fl_str_mv |
Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST |
| dc.title.alternative.eng.fl_str_mv |
Soybean yield estimation using remote sensing spectro-agroclimatic data in the WOFOST model |
| title |
Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST |
| spellingShingle |
Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST Tomazi, Izabely Machado Geoprocessamento Google Earth Engine NasaPower NDVI Python Geoprocessing CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| title_short |
Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST |
| title_full |
Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST |
| title_fullStr |
Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST |
| title_full_unstemmed |
Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST |
| title_sort |
Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST |
| author |
Tomazi, Izabely Machado |
| author_facet |
Tomazi, Izabely Machado |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Johann, Jerry Adriani |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
| dc.contributor.advisor-co1.fl_str_mv |
Becker, Willyan Ronaldo |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6173806880513817 |
| dc.contributor.referee1.fl_str_mv |
Johann, Jerry Adriani |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
| dc.contributor.referee2.fl_str_mv |
Paludo, Alex |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3065593150601602 |
| dc.contributor.referee3.fl_str_mv |
Maggi, Marcio Furlan |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/8677221771738301 |
| dc.contributor.author.fl_str_mv |
Tomazi, Izabely Machado |
| contributor_str_mv |
Johann, Jerry Adriani Becker, Willyan Ronaldo Johann, Jerry Adriani Paludo, Alex Maggi, Marcio Furlan |
| dc.subject.por.fl_str_mv |
Geoprocessamento Google Earth Engine NasaPower NDVI Python |
| topic |
Geoprocessamento Google Earth Engine NasaPower NDVI Python Geoprocessing CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| dc.subject.eng.fl_str_mv |
Geoprocessing |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| description |
The soybean crop is currently the main crop produced in Brazil, being responsible for a significant part of the national economy and generating income for producers. The use of remote sensing techniques contributes to achieving this context, because through its utilization producers can improve the use of their resources, generating greater profitability. Thus, the objective of this work was to estimate soybean yield using the technique of assimilation of agrometeorological data with the World Food Studies (WOFOST) crop growth model, at the field level for areas located in the municipalities of Castro and Piraí do Sul, state of Paraná. For this purpose, the WOFOST model was used associated with leaf area index data, from vegetation index calculations using Sentinel-2 satellite images, and climate data obtained through the NasaPower platform. The results show that spatial and soybean yield changes occur over the years. When comparing the estimated yield with the field yield, values of coefficient of determination (R²) of 0.5 and 0.6, RMSE of 679.36 and 346.95 kg ha-1 were obtained for the municipalities of Castro-PR and Piraí do Sul-PR, respectively. The accuracy of the model was calculated using the improved index of Willmott (2012) and presented satisfactory results for both municipalities, while for the evaluation of performance [Pi] the municipality of Castro-PR (Dr: 0.523; Pi: 0.369) was classified as tolerable and Piraí do Sul-PR (Dr: 0.700; Pi: 0.544) as good. The use of the WOFOST model allowed to estimate soybean yield at the pixel level, for plots of varying sizes of areas, providing results that allow further studies. |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024-06-10 |
| dc.date.accessioned.fl_str_mv |
2025-01-08T13:03:28Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
TOMAZI, Izabely Machado. Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST. 2024. 58 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - Paraná. |
| dc.identifier.uri.fl_str_mv |
https://tede.unioeste.br/handle/tede/7465 |
| identifier_str_mv |
TOMAZI, Izabely Machado. Estimativa de produtividade da soja utilizando dados espectro-agroclimáticos de sensoriamento remoto no modelo WOFOST. 2024. 58 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - Paraná. |
| url |
https://tede.unioeste.br/handle/tede/7465 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-5347692450416052129 |
| dc.relation.confidence.fl_str_mv |
600 600 600 600 |
| dc.relation.department.fl_str_mv |
2214374442868382015 |
| dc.relation.cnpq.fl_str_mv |
9185445721588761555 |
| dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
| dc.publisher.initials.fl_str_mv |
UNIOESTE |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
| publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
| instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
| instacron_str |
UNIOESTE |
| institution |
UNIOESTE |
| reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/7465/2/Izabely_M_Tomazi2024.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/7465/1/license.txt |
| bitstream.checksum.fl_str_mv |
2a984b2639ad0d959753a46b2f4c93e7 bd3efa91386c1718a7f26a329fdcb468 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
| repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
| _version_ |
1848092793830899712 |