Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Master thesis |
| Language: | por |
| Source: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| Download full: | https://tede.unioeste.br/handle/tede/7452 |
Summary: | Several human activities are automated by technological means capable of generating, processing, and storing data. This context is driven by the Internet and its subsequent phase known as the Internet of Things, enabling data traffic and connection among different types of devices in a distributed manner. Computational systems have vulnerabilities that can be exploited by malicious users, leading to attacks. Given this scenario, computer security has become a focus of study in the literature, emphasizing intrusion prevention and detection systems that create barriers against threats. These systems employ various techniques for attack detection, commonly leveraging machine learning algorithms such as artificial neural networks. In addition to the traditional approach of training artificial neural networks for security in a centralized manner, a new approach known as Federated Learning has been studied in the literature and implemented in systems. In light of this, the present work aims to compare Federated Learning with the traditional approach by constructing models of artificial neural networks and subsequently evaluating their performance using accuracy and recall metrics. The experiment applied the IoTID20 public security event dataset for intrusion detection, considering a binary classification task. Different data distributions among clients in the proposed architecture were also considered to evaluate scenarios of Independently and Identically Distributed and Non-Independently and Identically Distributed data. The results indicate that both studied approaches exhibit equivalent performance when the clients in the architecture have IID data and similar amounts of records. Furthermore, the Federated Learning approach can outperform the centralized approach when the chosen aggregation algorithm is Federated Average and the client with the most records has a data distribution favorable for the classification task. |
| id |
UNIOESTE-1_12f9bb2cb5a21817930ac9a6e11f5a6a |
|---|---|
| oai_identifier_str |
oai:tede.unioeste.br:tede/7452 |
| network_acronym_str |
UNIOESTE-1 |
| network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| repository_id_str |
|
| spelling |
Machado, Renato Bobsinhttp://lattes.cnpq.br/8407723021436270Maletzke, André Gustavohttp://lattes.cnpq.br/2790381980940945Souza, Cristiano Antonio dehttp://lattes.cnpq.br/2212198985055928http://lattes.cnpq.br/8052362665113396Ribera, Carlos Dimitri Ramirez2024-12-09T17:34:42Z2024-08-22Ribera, Carlos Dimitri Ramirez. Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado. 2024. 115f Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu - PR.https://tede.unioeste.br/handle/tede/7452Several human activities are automated by technological means capable of generating, processing, and storing data. This context is driven by the Internet and its subsequent phase known as the Internet of Things, enabling data traffic and connection among different types of devices in a distributed manner. Computational systems have vulnerabilities that can be exploited by malicious users, leading to attacks. Given this scenario, computer security has become a focus of study in the literature, emphasizing intrusion prevention and detection systems that create barriers against threats. These systems employ various techniques for attack detection, commonly leveraging machine learning algorithms such as artificial neural networks. In addition to the traditional approach of training artificial neural networks for security in a centralized manner, a new approach known as Federated Learning has been studied in the literature and implemented in systems. In light of this, the present work aims to compare Federated Learning with the traditional approach by constructing models of artificial neural networks and subsequently evaluating their performance using accuracy and recall metrics. The experiment applied the IoTID20 public security event dataset for intrusion detection, considering a binary classification task. Different data distributions among clients in the proposed architecture were also considered to evaluate scenarios of Independently and Identically Distributed and Non-Independently and Identically Distributed data. The results indicate that both studied approaches exhibit equivalent performance when the clients in the architecture have IID data and similar amounts of records. Furthermore, the Federated Learning approach can outperform the centralized approach when the chosen aggregation algorithm is Federated Average and the client with the most records has a data distribution favorable for the classification task.Diversas atividades humanas são automatizadas por meios tecnológicos capazes de gerar, processar e armazenar dados. Esse contexto é impulsionado pela Internet e sua fase subsequente conhecida como Internet das Coisas, que possibilitam o tráfego de dados e a conexão entre diferentes tipos de dispositivos de maneira distribuída. Sistemas computacionais possuem vulnerabilidades que podem ser exploradas por usuários mal-intencionados originando ataques. Tendo esse cenário em evidência, a segurança computacional se tornou alvo de estudos na literatura, onde destacam-se os sistemas de prevenção e detecção de intrusão, que são capazes de criar barreiras contra as ameaças. Tais sistemas exploram diferentes técnicas para detecção de ataques, sendo recorrente a utilização de algoritmos de aprendizagem de máquina, como as redes neurais artificiais. Além da abordagem tradicional de treinamento de redes neurais artificiais para segurança de maneira centralizada, uma nova abordagem conhecida como Federated Learning vem sendo estudada na literatura e utilizada nos sistemas. Considerando o exposto, o presente trabalho consiste em comparar o Federated Learning com a abordagem tradicional através da construção de modelos de redes neurais artificiais e posterior avaliação de seus desempenhos por meio das métricas de acurácia e recall. O experimento aplicou a base de eventos de segurança pública de detecção de intrusão nomeada IoTID20, e considera uma classificação binária. Também são relevadas diferentes distribuições de dados entre clientes da arquitetura proposta no experimento para avaliar cenários de dados Independently and Identically Distributed e Non-Independently and Identically Distributed. Os resultados apontam que ambas as abordagens estudadas possuem desempenho equivalentes quando os clientes da arquitetura possuem dados Independently and Identically Distributed e quantidades semelhantes de registros. Além disso, a abordagem de Federated Learning pode superar a centralizada quando o algoritmo de agregação escolhido é o Federated Average e o cliente da arquitetura que mais possui registros tem uma distribuição de dados favorável para a tarefa de classificação proposta.Submitted by Katia Abreu (katia.abreu@unioeste.br) on 2024-12-09T17:34:41Z No. of bitstreams: 1 Carlos_Dimitri_Ramirez_Ribera_2024.pdf: 7242852 bytes, checksum: 8a077f4fc0cfada146e79a6f6598d9b5 (MD5)Made available in DSpace on 2024-12-09T17:34:42Z (GMT). No. of bitstreams: 1 Carlos_Dimitri_Ramirez_Ribera_2024.pdf: 7242852 bytes, checksum: 8a077f4fc0cfada146e79a6f6598d9b5 (MD5) Previous issue date: 2024-08-22Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor8774263440366006536500Universidade Estadual do Oeste do ParanáFoz do IguaçuPrograma de Pós-Graduação em Engenharia Elétrica e ComputaçãoUNIOESTEBrasilCentro de Engenharias e Ciências Exatashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessInteligência ComputacionalMineração de DadosSegurança ComputacionalIoTID20Aprendizado de MáquinaInteligência ArtificialComputational IntelligenceData MiningComputer SecurityIoTID20Machine LearningArtificial IntelligenceFederated LearningIndependently and Identically DistributedNon-Independently and Identically DistributedCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAODetecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federadoIntrusion detection in internet of things devices with a federated learning approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1040084669565072649600600600600-773440212408214692289300925156837715312075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALCarlos_Dimitri_Ramirez_Ribera_2024.pdfCarlos_Dimitri_Ramirez_Ribera_2024.pdfapplication/pdf7242852http://tede.unioeste.br:8080/tede/bitstream/tede/7452/2/Carlos_Dimitri_Ramirez_Ribera_2024.pdf8a077f4fc0cfada146e79a6f6598d9b5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/7452/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/74522024-12-09 14:34:42.061oai:tede.unioeste.br:tede/7452Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2024-12-09T17:34:42Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
| dc.title.por.fl_str_mv |
Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado |
| dc.title.alternative.eng.fl_str_mv |
Intrusion detection in internet of things devices with a federated learning approach |
| title |
Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado |
| spellingShingle |
Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado Ribera, Carlos Dimitri Ramirez Inteligência Computacional Mineração de Dados Segurança Computacional IoTID20 Aprendizado de Máquina Inteligência Artificial Computational Intelligence Data Mining Computer Security IoTID20 Machine Learning Artificial Intelligence Federated Learning Independently and Identically Distributed Non-Independently and Identically Distributed CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
| title_short |
Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado |
| title_full |
Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado |
| title_fullStr |
Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado |
| title_full_unstemmed |
Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado |
| title_sort |
Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado |
| author |
Ribera, Carlos Dimitri Ramirez |
| author_facet |
Ribera, Carlos Dimitri Ramirez |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Machado, Renato Bobsin |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8407723021436270 |
| dc.contributor.referee1.fl_str_mv |
Maletzke, André Gustavo |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/2790381980940945 |
| dc.contributor.referee2.fl_str_mv |
Souza, Cristiano Antonio de |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2212198985055928 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8052362665113396 |
| dc.contributor.author.fl_str_mv |
Ribera, Carlos Dimitri Ramirez |
| contributor_str_mv |
Machado, Renato Bobsin Maletzke, André Gustavo Souza, Cristiano Antonio de |
| dc.subject.por.fl_str_mv |
Inteligência Computacional Mineração de Dados Segurança Computacional IoTID20 Aprendizado de Máquina Inteligência Artificial |
| topic |
Inteligência Computacional Mineração de Dados Segurança Computacional IoTID20 Aprendizado de Máquina Inteligência Artificial Computational Intelligence Data Mining Computer Security IoTID20 Machine Learning Artificial Intelligence Federated Learning Independently and Identically Distributed Non-Independently and Identically Distributed CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Computational Intelligence Data Mining Computer Security IoTID20 Machine Learning Artificial Intelligence Federated Learning Independently and Identically Distributed Non-Independently and Identically Distributed |
| dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
| description |
Several human activities are automated by technological means capable of generating, processing, and storing data. This context is driven by the Internet and its subsequent phase known as the Internet of Things, enabling data traffic and connection among different types of devices in a distributed manner. Computational systems have vulnerabilities that can be exploited by malicious users, leading to attacks. Given this scenario, computer security has become a focus of study in the literature, emphasizing intrusion prevention and detection systems that create barriers against threats. These systems employ various techniques for attack detection, commonly leveraging machine learning algorithms such as artificial neural networks. In addition to the traditional approach of training artificial neural networks for security in a centralized manner, a new approach known as Federated Learning has been studied in the literature and implemented in systems. In light of this, the present work aims to compare Federated Learning with the traditional approach by constructing models of artificial neural networks and subsequently evaluating their performance using accuracy and recall metrics. The experiment applied the IoTID20 public security event dataset for intrusion detection, considering a binary classification task. Different data distributions among clients in the proposed architecture were also considered to evaluate scenarios of Independently and Identically Distributed and Non-Independently and Identically Distributed data. The results indicate that both studied approaches exhibit equivalent performance when the clients in the architecture have IID data and similar amounts of records. Furthermore, the Federated Learning approach can outperform the centralized approach when the chosen aggregation algorithm is Federated Average and the client with the most records has a data distribution favorable for the classification task. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-12-09T17:34:42Z |
| dc.date.issued.fl_str_mv |
2024-08-22 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
Ribera, Carlos Dimitri Ramirez. Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado. 2024. 115f Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu - PR. |
| dc.identifier.uri.fl_str_mv |
https://tede.unioeste.br/handle/tede/7452 |
| identifier_str_mv |
Ribera, Carlos Dimitri Ramirez. Detecção de intrusão em dispositivos de Internet das coisas com uma abordagem de aprendizado federado. 2024. 115f Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu - PR. |
| url |
https://tede.unioeste.br/handle/tede/7452 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-1040084669565072649 |
| dc.relation.confidence.fl_str_mv |
600 600 600 600 |
| dc.relation.department.fl_str_mv |
-7734402124082146922 |
| dc.relation.cnpq.fl_str_mv |
8930092515683771531 |
| dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Foz do Iguaçu |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica e Computação |
| dc.publisher.initials.fl_str_mv |
UNIOESTE |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Centro de Engenharias e Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Foz do Iguaçu |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
| instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
| instacron_str |
UNIOESTE |
| institution |
UNIOESTE |
| reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/7452/2/Carlos_Dimitri_Ramirez_Ribera_2024.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/7452/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a077f4fc0cfada146e79a6f6598d9b5 bd3efa91386c1718a7f26a329fdcb468 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
| repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
| _version_ |
1848092793721847808 |