EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE

Detalhes bibliográficos
Autor(a) principal: de Almeida, João Luiz Ramalheira
Data de Publicação: 2017
Outros Autores: Balancieri, Renato; Universidade Estadual de Maringá, Roecker, Max Naegeler, Leal, Gislaine Camila Lapasini; Universidade Estadual de Maringá, Bermejo, Paulo Henrique; Universidade de Brasília
Idioma: por
Título da fonte: Revista de Sistemas e Computação
Texto Completo: https://revistas.unifacs.br/index.php/rsc/article/view/4717
Resumo: Following and register all the produced artifacts along the software development with the source code metrics and commits messages can be a hard task as the software grows in size and complexity. Data Mining tools, such as the Knowledge Discovery in Database (KDD), can be a helpful resource to detect patterns, characteristics and aspects of the development process and team. This paper presents the use of Association Rules in source code metrics with the goal to extract knowledge of source code repositories to identify important features in software's development. A model based on KDD described and a prototype implementing this model was developed. The prototype is characterized as a primary study relative to the application of the model in an example. This study was conducted aiming to characterize the use of the model in a specific context and serves as proof of concept. Various Apache Foundation’s projects evaluated to extract generalizable patterns of the developers and the impacts in the software product. Based on the outcomes of this tool, project managers can easily identify when the development process is in unwanted way and decide new strategies to put it on the right way. With this, it is concluded that knowledge extraction in source code repositories can be a helpful tool to support the decision-making on the software development.
id UNIF-1_ba35133e8d6e84df1b16e89918cbcdd6
oai_identifier_str oai:ojs.200.223.74.126:article/4717
network_acronym_str UNIF-1
network_name_str Revista de Sistemas e Computação
repository_id_str
spelling EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTESoftware Engineering; Knowledge engineering in software; Software development process management; Source code metricsFollowing and register all the produced artifacts along the software development with the source code metrics and commits messages can be a hard task as the software grows in size and complexity. Data Mining tools, such as the Knowledge Discovery in Database (KDD), can be a helpful resource to detect patterns, characteristics and aspects of the development process and team. This paper presents the use of Association Rules in source code metrics with the goal to extract knowledge of source code repositories to identify important features in software's development. A model based on KDD described and a prototype implementing this model was developed. The prototype is characterized as a primary study relative to the application of the model in an example. This study was conducted aiming to characterize the use of the model in a specific context and serves as proof of concept. Various Apache Foundation’s projects evaluated to extract generalizable patterns of the developers and the impacts in the software product. Based on the outcomes of this tool, project managers can easily identify when the development process is in unwanted way and decide new strategies to put it on the right way. With this, it is concluded that knowledge extraction in source code repositories can be a helpful tool to support the decision-making on the software development.Revista de Sistemas e Computação - RSCRevistade Sistemas y Computaciónde Almeida, João Luiz RamalheiraBalancieri, Renato; Universidade Estadual de MaringáRoecker, Max NaegelerLeal, Gislaine Camila Lapasini; Universidade Estadual de MaringáBermejo, Paulo Henrique; Universidade de Brasília2017-08-18Artigo Avaliado pelos Paresinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unifacs.br/index.php/rsc/article/view/471710.36558/rsc.v7i1.4717Revista de Sistemas e Computação - RSC; v. 7, n. 1 (2017)Revistade Sistemas y Computación; v. 7, n. 1 (2017)reponame:Revista de Sistemas e Computaçãoinstname:Universidade Salvador (UNIFACS)instacron:UNIFACSporinfo:eu-repo/semantics/openAccess2017-08-18T15:50:16Zoai:ojs.200.223.74.126:article/4717Revistahttps://revistas.unifacs.br/index.php/rscPRIhttps://revistas.unifacs.br/index.php/rsc/oaipaulo.caetano@unifacs.br || unifacs@nexodoc.com.br2237-29032237-2903opendoar:2017-08-18T15:50:16Revista de Sistemas e Computação - Universidade Salvador (UNIFACS)false
dc.title.none.fl_str_mv EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
title EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
spellingShingle EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
de Almeida, João Luiz Ramalheira
Software Engineering; Knowledge engineering in software; Software development process management; Source code metrics
title_short EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
title_full EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
title_fullStr EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
title_full_unstemmed EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
title_sort EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
author de Almeida, João Luiz Ramalheira
author_facet de Almeida, João Luiz Ramalheira
Balancieri, Renato; Universidade Estadual de Maringá
Roecker, Max Naegeler
Leal, Gislaine Camila Lapasini; Universidade Estadual de Maringá
Bermejo, Paulo Henrique; Universidade de Brasília
author_role author
author2 Balancieri, Renato; Universidade Estadual de Maringá
Roecker, Max Naegeler
Leal, Gislaine Camila Lapasini; Universidade Estadual de Maringá
Bermejo, Paulo Henrique; Universidade de Brasília
author2_role author
author
author
author
dc.contributor.none.fl_str_mv
dc.contributor.author.fl_str_mv de Almeida, João Luiz Ramalheira
Balancieri, Renato; Universidade Estadual de Maringá
Roecker, Max Naegeler
Leal, Gislaine Camila Lapasini; Universidade Estadual de Maringá
Bermejo, Paulo Henrique; Universidade de Brasília
dc.subject.por.fl_str_mv Software Engineering; Knowledge engineering in software; Software development process management; Source code metrics
topic Software Engineering; Knowledge engineering in software; Software development process management; Source code metrics
description Following and register all the produced artifacts along the software development with the source code metrics and commits messages can be a hard task as the software grows in size and complexity. Data Mining tools, such as the Knowledge Discovery in Database (KDD), can be a helpful resource to detect patterns, characteristics and aspects of the development process and team. This paper presents the use of Association Rules in source code metrics with the goal to extract knowledge of source code repositories to identify important features in software's development. A model based on KDD described and a prototype implementing this model was developed. The prototype is characterized as a primary study relative to the application of the model in an example. This study was conducted aiming to characterize the use of the model in a specific context and serves as proof of concept. Various Apache Foundation’s projects evaluated to extract generalizable patterns of the developers and the impacts in the software product. Based on the outcomes of this tool, project managers can easily identify when the development process is in unwanted way and decide new strategies to put it on the right way. With this, it is concluded that knowledge extraction in source code repositories can be a helpful tool to support the decision-making on the software development.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-18
dc.type.driver.fl_str_mv Artigo Avaliado pelos Pares
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.unifacs.br/index.php/rsc/article/view/4717
10.36558/rsc.v7i1.4717
url https://revistas.unifacs.br/index.php/rsc/article/view/4717
identifier_str_mv 10.36558/rsc.v7i1.4717
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Revista de Sistemas e Computação - RSC
Revistade Sistemas y Computación
publisher.none.fl_str_mv Revista de Sistemas e Computação - RSC
Revistade Sistemas y Computación
dc.source.none.fl_str_mv Revista de Sistemas e Computação - RSC; v. 7, n. 1 (2017)
Revistade Sistemas y Computación; v. 7, n. 1 (2017)
reponame:Revista de Sistemas e Computação
instname:Universidade Salvador (UNIFACS)
instacron:UNIFACS
instname_str Universidade Salvador (UNIFACS)
instacron_str UNIFACS
institution UNIFACS
reponame_str Revista de Sistemas e Computação
collection Revista de Sistemas e Computação
repository.name.fl_str_mv Revista de Sistemas e Computação - Universidade Salvador (UNIFACS)
repository.mail.fl_str_mv paulo.caetano@unifacs.br || unifacs@nexodoc.com.br
_version_ 1833830804823736320