EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2017 |
| Outros Autores: | , , , |
| Idioma: | por |
| Título da fonte: | Revista de Sistemas e Computação |
| Texto Completo: | https://revistas.unifacs.br/index.php/rsc/article/view/4717 |
Resumo: | Following and register all the produced artifacts along the software development with the source code metrics and commits messages can be a hard task as the software grows in size and complexity. Data Mining tools, such as the Knowledge Discovery in Database (KDD), can be a helpful resource to detect patterns, characteristics and aspects of the development process and team. This paper presents the use of Association Rules in source code metrics with the goal to extract knowledge of source code repositories to identify important features in software's development. A model based on KDD described and a prototype implementing this model was developed. The prototype is characterized as a primary study relative to the application of the model in an example. This study was conducted aiming to characterize the use of the model in a specific context and serves as proof of concept. Various Apache Foundation’s projects evaluated to extract generalizable patterns of the developers and the impacts in the software product. Based on the outcomes of this tool, project managers can easily identify when the development process is in unwanted way and decide new strategies to put it on the right way. With this, it is concluded that knowledge extraction in source code repositories can be a helpful tool to support the decision-making on the software development. |
| id |
UNIF-1_ba35133e8d6e84df1b16e89918cbcdd6 |
|---|---|
| oai_identifier_str |
oai:ojs.200.223.74.126:article/4717 |
| network_acronym_str |
UNIF-1 |
| network_name_str |
Revista de Sistemas e Computação |
| repository_id_str |
|
| spelling |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTESoftware Engineering; Knowledge engineering in software; Software development process management; Source code metricsFollowing and register all the produced artifacts along the software development with the source code metrics and commits messages can be a hard task as the software grows in size and complexity. Data Mining tools, such as the Knowledge Discovery in Database (KDD), can be a helpful resource to detect patterns, characteristics and aspects of the development process and team. This paper presents the use of Association Rules in source code metrics with the goal to extract knowledge of source code repositories to identify important features in software's development. A model based on KDD described and a prototype implementing this model was developed. The prototype is characterized as a primary study relative to the application of the model in an example. This study was conducted aiming to characterize the use of the model in a specific context and serves as proof of concept. Various Apache Foundation’s projects evaluated to extract generalizable patterns of the developers and the impacts in the software product. Based on the outcomes of this tool, project managers can easily identify when the development process is in unwanted way and decide new strategies to put it on the right way. With this, it is concluded that knowledge extraction in source code repositories can be a helpful tool to support the decision-making on the software development.Revista de Sistemas e Computação - RSCRevistade Sistemas y Computaciónde Almeida, João Luiz RamalheiraBalancieri, Renato; Universidade Estadual de MaringáRoecker, Max NaegelerLeal, Gislaine Camila Lapasini; Universidade Estadual de MaringáBermejo, Paulo Henrique; Universidade de Brasília2017-08-18Artigo Avaliado pelos Paresinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unifacs.br/index.php/rsc/article/view/471710.36558/rsc.v7i1.4717Revista de Sistemas e Computação - RSC; v. 7, n. 1 (2017)Revistade Sistemas y Computación; v. 7, n. 1 (2017)reponame:Revista de Sistemas e Computaçãoinstname:Universidade Salvador (UNIFACS)instacron:UNIFACSporinfo:eu-repo/semantics/openAccess2017-08-18T15:50:16Zoai:ojs.200.223.74.126:article/4717Revistahttps://revistas.unifacs.br/index.php/rscPRIhttps://revistas.unifacs.br/index.php/rsc/oaipaulo.caetano@unifacs.br || unifacs@nexodoc.com.br2237-29032237-2903opendoar:2017-08-18T15:50:16Revista de Sistemas e Computação - Universidade Salvador (UNIFACS)false |
| dc.title.none.fl_str_mv |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE |
| title |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE |
| spellingShingle |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE de Almeida, João Luiz Ramalheira Software Engineering; Knowledge engineering in software; Software development process management; Source code metrics |
| title_short |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE |
| title_full |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE |
| title_fullStr |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE |
| title_full_unstemmed |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE |
| title_sort |
EXTRAÇÃO DE CONHECIMENTO A PARTIR DE REGRAS DE ASSOCIAÇÃO ENTRE MÉTRICAS DE CÓDIGO FONTE |
| author |
de Almeida, João Luiz Ramalheira |
| author_facet |
de Almeida, João Luiz Ramalheira Balancieri, Renato; Universidade Estadual de Maringá Roecker, Max Naegeler Leal, Gislaine Camila Lapasini; Universidade Estadual de Maringá Bermejo, Paulo Henrique; Universidade de Brasília |
| author_role |
author |
| author2 |
Balancieri, Renato; Universidade Estadual de Maringá Roecker, Max Naegeler Leal, Gislaine Camila Lapasini; Universidade Estadual de Maringá Bermejo, Paulo Henrique; Universidade de Brasília |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
|
| dc.contributor.author.fl_str_mv |
de Almeida, João Luiz Ramalheira Balancieri, Renato; Universidade Estadual de Maringá Roecker, Max Naegeler Leal, Gislaine Camila Lapasini; Universidade Estadual de Maringá Bermejo, Paulo Henrique; Universidade de Brasília |
| dc.subject.por.fl_str_mv |
Software Engineering; Knowledge engineering in software; Software development process management; Source code metrics |
| topic |
Software Engineering; Knowledge engineering in software; Software development process management; Source code metrics |
| description |
Following and register all the produced artifacts along the software development with the source code metrics and commits messages can be a hard task as the software grows in size and complexity. Data Mining tools, such as the Knowledge Discovery in Database (KDD), can be a helpful resource to detect patterns, characteristics and aspects of the development process and team. This paper presents the use of Association Rules in source code metrics with the goal to extract knowledge of source code repositories to identify important features in software's development. A model based on KDD described and a prototype implementing this model was developed. The prototype is characterized as a primary study relative to the application of the model in an example. This study was conducted aiming to characterize the use of the model in a specific context and serves as proof of concept. Various Apache Foundation’s projects evaluated to extract generalizable patterns of the developers and the impacts in the software product. Based on the outcomes of this tool, project managers can easily identify when the development process is in unwanted way and decide new strategies to put it on the right way. With this, it is concluded that knowledge extraction in source code repositories can be a helpful tool to support the decision-making on the software development. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-08-18 |
| dc.type.driver.fl_str_mv |
Artigo Avaliado pelos Pares |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://revistas.unifacs.br/index.php/rsc/article/view/4717 10.36558/rsc.v7i1.4717 |
| url |
https://revistas.unifacs.br/index.php/rsc/article/view/4717 |
| identifier_str_mv |
10.36558/rsc.v7i1.4717 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Revista de Sistemas e Computação - RSC Revistade Sistemas y Computación |
| publisher.none.fl_str_mv |
Revista de Sistemas e Computação - RSC Revistade Sistemas y Computación |
| dc.source.none.fl_str_mv |
Revista de Sistemas e Computação - RSC; v. 7, n. 1 (2017) Revistade Sistemas y Computación; v. 7, n. 1 (2017) reponame:Revista de Sistemas e Computação instname:Universidade Salvador (UNIFACS) instacron:UNIFACS |
| instname_str |
Universidade Salvador (UNIFACS) |
| instacron_str |
UNIFACS |
| institution |
UNIFACS |
| reponame_str |
Revista de Sistemas e Computação |
| collection |
Revista de Sistemas e Computação |
| repository.name.fl_str_mv |
Revista de Sistemas e Computação - Universidade Salvador (UNIFACS) |
| repository.mail.fl_str_mv |
paulo.caetano@unifacs.br || unifacs@nexodoc.com.br |
| _version_ |
1833830804823736320 |