BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , |
Language: | eng |
Source: | Revista de Sistemas e Computação |
Download full: | https://revistas.unifacs.br/index.php/rsc/article/view/7903 |
Summary: | The COVID-19 pandemic affected all countries worldwide, causing big changes in people's routines due to public policies for disease spreading control. Among the most impacting measures were social distancing policies and lockdown, leading to an intense discussion by the population. To describe this discussion in Brazil, this research applied data science and natural language methods to analyze posts on Twitter. It processed more than 12.9 million tweets between 2020 and 2021, and the results highlighted the main topics discussed by Brazilian Twitter users, such as the ideological-political component. The approach employed in this research proved to help extract valuable information in massive data mass.DOI: 10.36558/rsc.v12i3.7903 |
id |
UNIF-1_598e8e4f1d36d9710d43effc017c99fb |
---|---|
oai_identifier_str |
oai:ojs.200.223.74.126:article/7903 |
network_acronym_str |
UNIF-1 |
network_name_str |
Revista de Sistemas e Computação |
repository_id_str |
|
spelling |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTERNatural language processing; covid-19; twitter; topic modellingThe COVID-19 pandemic affected all countries worldwide, causing big changes in people's routines due to public policies for disease spreading control. Among the most impacting measures were social distancing policies and lockdown, leading to an intense discussion by the population. To describe this discussion in Brazil, this research applied data science and natural language methods to analyze posts on Twitter. It processed more than 12.9 million tweets between 2020 and 2021, and the results highlighted the main topics discussed by Brazilian Twitter users, such as the ideological-political component. The approach employed in this research proved to help extract valuable information in massive data mass.DOI: 10.36558/rsc.v12i3.7903Revista de Sistemas e Computação - RSCRevistade Sistemas y ComputaciónCAPESXavier, Fernando; University of São PauloAmaral, Gustavo Rick; Pontifical Catholic University of São Paulo (PUC-SP)Saraiva, Antonio Mauro; University of São Paulo (USP)2023-01-06info:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unifacs.br/index.php/rsc/article/view/790310.36558/rsc.v12i3.7903Revista de Sistemas e Computação - RSC; v. 12, n. 3 (2022)Revistade Sistemas y Computación; v. 12, n. 3 (2022)reponame:Revista de Sistemas e Computaçãoinstname:Universidade Salvador (UNIFACS)instacron:UNIFACSenginfo:eu-repo/semantics/openAccess2023-01-13T12:57:29Zoai:ojs.200.223.74.126:article/7903Revistahttps://revistas.unifacs.br/index.php/rscPRIhttps://revistas.unifacs.br/index.php/rsc/oaipaulo.caetano@unifacs.br || unifacs@nexodoc.com.br2237-29032237-2903opendoar:2023-01-13T12:57:29Revista de Sistemas e Computação - Universidade Salvador (UNIFACS)false |
dc.title.none.fl_str_mv |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER |
title |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER |
spellingShingle |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER Xavier, Fernando; University of São Paulo Natural language processing; covid-19; twitter; topic modelling |
title_short |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER |
title_full |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER |
title_fullStr |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER |
title_full_unstemmed |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER |
title_sort |
BRAZILIAN DISCUSSION ABOUT COVID-19 LOCKDOWN POLICIES ON TWITTER |
author |
Xavier, Fernando; University of São Paulo |
author_facet |
Xavier, Fernando; University of São Paulo Amaral, Gustavo Rick; Pontifical Catholic University of São Paulo (PUC-SP) Saraiva, Antonio Mauro; University of São Paulo (USP) |
author_role |
author |
author2 |
Amaral, Gustavo Rick; Pontifical Catholic University of São Paulo (PUC-SP) Saraiva, Antonio Mauro; University of São Paulo (USP) |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
CAPES |
dc.contributor.author.fl_str_mv |
Xavier, Fernando; University of São Paulo Amaral, Gustavo Rick; Pontifical Catholic University of São Paulo (PUC-SP) Saraiva, Antonio Mauro; University of São Paulo (USP) |
dc.subject.por.fl_str_mv |
Natural language processing; covid-19; twitter; topic modelling |
topic |
Natural language processing; covid-19; twitter; topic modelling |
description |
The COVID-19 pandemic affected all countries worldwide, causing big changes in people's routines due to public policies for disease spreading control. Among the most impacting measures were social distancing policies and lockdown, leading to an intense discussion by the population. To describe this discussion in Brazil, this research applied data science and natural language methods to analyze posts on Twitter. It processed more than 12.9 million tweets between 2020 and 2021, and the results highlighted the main topics discussed by Brazilian Twitter users, such as the ideological-political component. The approach employed in this research proved to help extract valuable information in massive data mass.DOI: 10.36558/rsc.v12i3.7903 |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-06 |
dc.type.none.fl_str_mv |
|
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.unifacs.br/index.php/rsc/article/view/7903 10.36558/rsc.v12i3.7903 |
url |
https://revistas.unifacs.br/index.php/rsc/article/view/7903 |
identifier_str_mv |
10.36558/rsc.v12i3.7903 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Revista de Sistemas e Computação - RSC Revistade Sistemas y Computación |
publisher.none.fl_str_mv |
Revista de Sistemas e Computação - RSC Revistade Sistemas y Computación |
dc.source.none.fl_str_mv |
Revista de Sistemas e Computação - RSC; v. 12, n. 3 (2022) Revistade Sistemas y Computación; v. 12, n. 3 (2022) reponame:Revista de Sistemas e Computação instname:Universidade Salvador (UNIFACS) instacron:UNIFACS |
instname_str |
Universidade Salvador (UNIFACS) |
instacron_str |
UNIFACS |
institution |
UNIFACS |
reponame_str |
Revista de Sistemas e Computação |
collection |
Revista de Sistemas e Computação |
repository.name.fl_str_mv |
Revista de Sistemas e Computação - Universidade Salvador (UNIFACS) |
repository.mail.fl_str_mv |
paulo.caetano@unifacs.br || unifacs@nexodoc.com.br |
_version_ |
1833830805423521792 |