New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
Main Author: | |
---|---|
Publication Date: | 2018 |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNIFESP |
Download full: | https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=ISSI&s1=360323&sort=Paging&vfpref=html&r=6&mx-pid=3790964 https://repositorio.unifesp.br/handle/11600/53843 |
Summary: | We present here some new identities for generalizations of Fibonacci and Lucas numbers by combinatorially interpreting these numbers in terms of numbers of certain tilings of a 1 x m board. As a consequence, some new interesting identities involving the ordinaries Fibonacci and Lucas numbers are derived. |
id |
UFSP_cfec5ff616c6cd58aeebe0d3953b90c7 |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/53843 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas NumbersGeneralized Fibonacci numberGeneralized Lucas numberTilingWe present here some new identities for generalizations of Fibonacci and Lucas numbers by combinatorially interpreting these numbers in terms of numbers of certain tilings of a 1 x m board. As a consequence, some new interesting identities involving the ordinaries Fibonacci and Lucas numbers are derived.Fed Univ Sao Paulo UNIFESP, Dept Sci & Technol, BR-12247014 Sao Jose Dos Campos, SP, BrazilFed Univ Sao Paulo UNIFESP, Dept Sci & Technol, BR-12247014 Sao Jose Dos Campos, SP, BrazilWeb of ScienceCNPqCharles Babbage Res Ctr2020-07-02T18:52:02Z2020-07-02T18:52:02Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion103-111application/pdfhttps://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=ISSI&s1=360323&sort=Paging&vfpref=html&r=6&mx-pid=3790964Ars Combinatoria. Winnipeg, v. 137, p. 103-111, 2018.WOS000426140100006.pdf0381-7032https://repositorio.unifesp.br/handle/11600/53843WOS:000426140100006engArs CombinatoriaWinnipeginfo:eu-repo/semantics/openAccessda Silva, Robson [UNIFESP]reponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-11T04:07:22Zoai:repositorio.unifesp.br/:11600/53843Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-11T04:07:22Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers |
title |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers |
spellingShingle |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers da Silva, Robson [UNIFESP] Generalized Fibonacci number Generalized Lucas number Tiling |
title_short |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers |
title_full |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers |
title_fullStr |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers |
title_full_unstemmed |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers |
title_sort |
New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers |
author |
da Silva, Robson [UNIFESP] |
author_facet |
da Silva, Robson [UNIFESP] |
author_role |
author |
dc.contributor.author.fl_str_mv |
da Silva, Robson [UNIFESP] |
dc.subject.por.fl_str_mv |
Generalized Fibonacci number Generalized Lucas number Tiling |
topic |
Generalized Fibonacci number Generalized Lucas number Tiling |
description |
We present here some new identities for generalizations of Fibonacci and Lucas numbers by combinatorially interpreting these numbers in terms of numbers of certain tilings of a 1 x m board. As a consequence, some new interesting identities involving the ordinaries Fibonacci and Lucas numbers are derived. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2020-07-02T18:52:02Z 2020-07-02T18:52:02Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=ISSI&s1=360323&sort=Paging&vfpref=html&r=6&mx-pid=3790964 Ars Combinatoria. Winnipeg, v. 137, p. 103-111, 2018. WOS000426140100006.pdf 0381-7032 https://repositorio.unifesp.br/handle/11600/53843 WOS:000426140100006 |
url |
https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=ISSI&s1=360323&sort=Paging&vfpref=html&r=6&mx-pid=3790964 https://repositorio.unifesp.br/handle/11600/53843 |
identifier_str_mv |
Ars Combinatoria. Winnipeg, v. 137, p. 103-111, 2018. WOS000426140100006.pdf 0381-7032 WOS:000426140100006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ars Combinatoria |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
103-111 application/pdf |
dc.coverage.none.fl_str_mv |
Winnipeg |
dc.publisher.none.fl_str_mv |
Charles Babbage Res Ctr |
publisher.none.fl_str_mv |
Charles Babbage Res Ctr |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1841453664895500288 |