New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers

Bibliographic Details
Main Author: da Silva, Robson [UNIFESP]
Publication Date: 2018
Format: Article
Language: eng
Source: Repositório Institucional da UNIFESP
Download full: https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=ISSI&s1=360323&sort=Paging&vfpref=html&r=6&mx-pid=3790964
https://repositorio.unifesp.br/handle/11600/53843
Summary: We present here some new identities for generalizations of Fibonacci and Lucas numbers by combinatorially interpreting these numbers in terms of numbers of certain tilings of a 1 x m board. As a consequence, some new interesting identities involving the ordinaries Fibonacci and Lucas numbers are derived.
id UFSP_cfec5ff616c6cd58aeebe0d3953b90c7
oai_identifier_str oai:repositorio.unifesp.br/:11600/53843
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas NumbersGeneralized Fibonacci numberGeneralized Lucas numberTilingWe present here some new identities for generalizations of Fibonacci and Lucas numbers by combinatorially interpreting these numbers in terms of numbers of certain tilings of a 1 x m board. As a consequence, some new interesting identities involving the ordinaries Fibonacci and Lucas numbers are derived.Fed Univ Sao Paulo UNIFESP, Dept Sci & Technol, BR-12247014 Sao Jose Dos Campos, SP, BrazilFed Univ Sao Paulo UNIFESP, Dept Sci & Technol, BR-12247014 Sao Jose Dos Campos, SP, BrazilWeb of ScienceCNPqCharles Babbage Res Ctr2020-07-02T18:52:02Z2020-07-02T18:52:02Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion103-111application/pdfhttps://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=ISSI&s1=360323&sort=Paging&vfpref=html&r=6&mx-pid=3790964Ars Combinatoria. Winnipeg, v. 137, p. 103-111, 2018.WOS000426140100006.pdf0381-7032https://repositorio.unifesp.br/handle/11600/53843WOS:000426140100006engArs CombinatoriaWinnipeginfo:eu-repo/semantics/openAccessda Silva, Robson [UNIFESP]reponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-11T04:07:22Zoai:repositorio.unifesp.br/:11600/53843Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-11T04:07:22Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
title New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
spellingShingle New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
da Silva, Robson [UNIFESP]
Generalized Fibonacci number
Generalized Lucas number
Tiling
title_short New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
title_full New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
title_fullStr New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
title_full_unstemmed New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
title_sort New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
author da Silva, Robson [UNIFESP]
author_facet da Silva, Robson [UNIFESP]
author_role author
dc.contributor.author.fl_str_mv da Silva, Robson [UNIFESP]
dc.subject.por.fl_str_mv Generalized Fibonacci number
Generalized Lucas number
Tiling
topic Generalized Fibonacci number
Generalized Lucas number
Tiling
description We present here some new identities for generalizations of Fibonacci and Lucas numbers by combinatorially interpreting these numbers in terms of numbers of certain tilings of a 1 x m board. As a consequence, some new interesting identities involving the ordinaries Fibonacci and Lucas numbers are derived.
publishDate 2018
dc.date.none.fl_str_mv 2018
2020-07-02T18:52:02Z
2020-07-02T18:52:02Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=ISSI&s1=360323&sort=Paging&vfpref=html&r=6&mx-pid=3790964
Ars Combinatoria. Winnipeg, v. 137, p. 103-111, 2018.
WOS000426140100006.pdf
0381-7032
https://repositorio.unifesp.br/handle/11600/53843
WOS:000426140100006
url https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=ISSI&s1=360323&sort=Paging&vfpref=html&r=6&mx-pid=3790964
https://repositorio.unifesp.br/handle/11600/53843
identifier_str_mv Ars Combinatoria. Winnipeg, v. 137, p. 103-111, 2018.
WOS000426140100006.pdf
0381-7032
WOS:000426140100006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ars Combinatoria
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 103-111
application/pdf
dc.coverage.none.fl_str_mv Winnipeg
dc.publisher.none.fl_str_mv Charles Babbage Res Ctr
publisher.none.fl_str_mv Charles Babbage Res Ctr
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1841453664895500288