Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético

Detalhes bibliográficos
Autor(a) principal: Müller, Iuri Hermes
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300001c480
Texto Completo: http://repositorio.ufsm.br/handle/1/33781
Resumo: The use of computational optimization methods in structural design, employing surrogate models based on artificial neural networks (ANNs), is a promising approach for achieving efficient and cost-effective solutions compared to traditional optimization relying solely on the finite element method (FEM). These methods are particularly effective for composite material structures, which can be tailored to meet varying mechanical requirements and are fabricated via fused deposition modeling (FDM), such as 3D printing, due to their flexibility and capability to efficiently produce complex geometries. This study aims to implement a numerical optimization algorithm combined with an ANN trained and tested using a database to optimize the support arm of an unmanned aerial vehicle (UAV), manufactured using FDM. The methodology was divided into two main stages. In the first stage, an algorithm was developed in Python to generate a database from FEM simulations conducted in ABAQUS software. These simulations considered the arm, fabricated using polylactic acid (PLA) as the constituent material, with one fixed end and the other subjected to thrust and torsional loads, replicating the UAV's operational conditions. Four geometric parameters of the arm (structure height and width, thickness, and the number of diagonal reinforcement cells) were modified to obtain the masses and stiffness values for each configuration. In the second stage, the algorithm was enhanced by incorporating three additional geometric variables (thickness of the edges and bottom reinforcement, and width of the top reinforcement), resulting in a more extensive database. This expanded dataset was used to train the ANN, which predicted masses and stiffness values based on the geometric variables. The multi-objective optimization problem was then defined using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to minimize mass and maximize stiffness, constrained by the geometric variables, with the ANN employed to evaluate the multi-objective function as a surrogate for FEM. From the solutions obtained on the Pareto front, one was selected for experimental validation. The optimized and standard models were designed in computer-aided design (CAD) software, fabricated using FDM with PLA, and subjected to bending tests to replicate the conditions implemented in the FEM analyses. The results demonstrated that the ANN exhibited high accuracy, with correlation coefficients of 0.99 for stiffness and 0.99 for mass, reducing analysis time by 99.65% compared to FEM. The optimized model showed an average specific stiffness increase of 51.14% and a mass reduction of 42.13% compared to the standard model. Finally, the results indicated that the proposed methodology is efficient in determining optimized solutions. While the database generation required substantial computational time, analyses conducted using the trained neural network demonstrated a significant reduction in processing time. Moreover, the proposed method is adaptable for application in various engineering projects involving composite materials
id UFSM_bf447c58b18d2336752cb3e4a8a5476f
oai_identifier_str oai:repositorio.ufsm.br:1/33781
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genéticoImplementation of a surrogate model for structural optimization based on artificial neural network and genetic algorithmOtimização estruturalRede neural artificialAlgoritmo genéticoModelagem por deposição fundidaMateriais compósitosStructural optimizationArtificial neural networkGenetic algorithmFused deposition modellingComposite materialsCNPQ::ENGENHARIAS::ENGENHARIA MECANICAThe use of computational optimization methods in structural design, employing surrogate models based on artificial neural networks (ANNs), is a promising approach for achieving efficient and cost-effective solutions compared to traditional optimization relying solely on the finite element method (FEM). These methods are particularly effective for composite material structures, which can be tailored to meet varying mechanical requirements and are fabricated via fused deposition modeling (FDM), such as 3D printing, due to their flexibility and capability to efficiently produce complex geometries. This study aims to implement a numerical optimization algorithm combined with an ANN trained and tested using a database to optimize the support arm of an unmanned aerial vehicle (UAV), manufactured using FDM. The methodology was divided into two main stages. In the first stage, an algorithm was developed in Python to generate a database from FEM simulations conducted in ABAQUS software. These simulations considered the arm, fabricated using polylactic acid (PLA) as the constituent material, with one fixed end and the other subjected to thrust and torsional loads, replicating the UAV's operational conditions. Four geometric parameters of the arm (structure height and width, thickness, and the number of diagonal reinforcement cells) were modified to obtain the masses and stiffness values for each configuration. In the second stage, the algorithm was enhanced by incorporating three additional geometric variables (thickness of the edges and bottom reinforcement, and width of the top reinforcement), resulting in a more extensive database. This expanded dataset was used to train the ANN, which predicted masses and stiffness values based on the geometric variables. The multi-objective optimization problem was then defined using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to minimize mass and maximize stiffness, constrained by the geometric variables, with the ANN employed to evaluate the multi-objective function as a surrogate for FEM. From the solutions obtained on the Pareto front, one was selected for experimental validation. The optimized and standard models were designed in computer-aided design (CAD) software, fabricated using FDM with PLA, and subjected to bending tests to replicate the conditions implemented in the FEM analyses. The results demonstrated that the ANN exhibited high accuracy, with correlation coefficients of 0.99 for stiffness and 0.99 for mass, reducing analysis time by 99.65% compared to FEM. The optimized model showed an average specific stiffness increase of 51.14% and a mass reduction of 42.13% compared to the standard model. Finally, the results indicated that the proposed methodology is efficient in determining optimized solutions. While the database generation required substantial computational time, analyses conducted using the trained neural network demonstrated a significant reduction in processing time. Moreover, the proposed method is adaptable for application in various engineering projects involving composite materialsCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO uso de métodos computacionais de otimização em projetos estruturais, utilizando modelos substitutos baseados em redes neurais artificiais (do inglês, ANN), é uma abordagem promissora para soluções eficientes e com economia de custo computacional, se comparada à otimização tradicional com uso apenas do método de elementos finitos (do inglês, FEM). Esses métodos são particularmente eficazes em estruturas de materiais compósitos, que são adaptáveis a atender diferentes requisitos mecânicos, fabricadas por modelagem por deposição fundida (do inglês, FDM), como a impressão 3D, em função de sua flexibilidade e capacidade de fabricação eficiente de geometrias complexas. Este trabalho visa implementar um algoritmo de otimização numérica, combinado com uma ANN treinada e testada a partir de um banco de dados, para otimizar a haste de sustentação de um veículo aéreo não tripulado (do inglês, UAV), fabricada por FDM. A metodologia foi dividida em duas etapas. A primeira focou no desenvolvimento de um algoritmo em Python para gerar um banco de dados a partir de simulações por FEM no software ABAQUS. Essas simulações consideraram a haste, fabricada em PLA (ácido polilático) como material constituinte, com uma extremidade fixa e outra submetida a uma força de empuxo e a uma torção, replicando as condições de operação do UAV. Foram modificados quatro parâmetros geométricos da haste (altura e largura da estrutura, e espessura e quantidade de células de reforço diagonais), obtendo-se massas e rigidezes para cada configuração. Na segunda etapa, o algoritmo foi aprimorado com três novas variáveis geométricas (espessura das bordas e do reforço inferior e largura do reforço superior), gerando um banco de dados mais amplo. Este foi usado para treinar a ANN, que previu massas e rigidezes com base nas variáveis geométricas. O problema de otimização multiobjetivo foi então definido, utilizando Algoritmo Genético de Ordenação Não Dominada II (NSGA-II), para minimizar a massa e maximizar a rigidez, a partir de restrições sobre as variáveis geométricas, e empregando a ANN na avaliação da função multiobjetivo, em substituição ao FEM. Das soluções encontradas em uma frente de Pareto, uma foi selecionada para validação experimental, e os modelos otimizado e padrão foram desenhados em CAD (computer aided design), fabricados por FDM em PLA e submetidos a ensaios de flexão, de modo a reproduzir as condições implementas nas análises por FEM. Os resultados mostraram que a ANN teve alta acuracidade, com correlações de 0,99 para rigidez e 0,99 para massa, e reduziu o tempo de análise em 99,65% em comparação ao FEM. O modelo otimizado apresentou um aumento em média percentual da rigidez específica em 51.14% e uma redução de 42,13% na massa em relação ao modelo padrão. Por fim, os resultados mostraram que a metodologia proposta é eficiente na determinação de soluções otimizadas e, apesar de a geração do banco de dados consumir expressivo tempo computacional, as análises com a rede neural treinada apresentaram significativa redução de tempo. Além disso, o método proposto é adaptável ao emprego em diferentes projetos de engenharia baseado em materiais compósitos.Universidade Federal de Santa MariaBrasilEngenharia MecânicaUFSMPrograma de Pós-Graduação em Engenharia AmbientalCentro de TecnologiaTonatto, Maikson Luiz Passaiahttp://lattes.cnpq.br/1639513829733095Amico, Sandro CamposAlmeida Júnior , José Humberto SantosSantos, Tiago dosMüller, Iuri Hermes2025-01-09T15:22:59Z2025-01-09T15:22:59Z2024-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/33781ark:/26339/001300001c480porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2025-01-09T15:22:59Zoai:repositorio.ufsm.br:1/33781Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2025-01-09T15:22:59Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
Implementation of a surrogate model for structural optimization based on artificial neural network and genetic algorithm
title Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
spellingShingle Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
Müller, Iuri Hermes
Otimização estrutural
Rede neural artificial
Algoritmo genético
Modelagem por deposição fundida
Materiais compósitos
Structural optimization
Artificial neural network
Genetic algorithm
Fused deposition modelling
Composite materials
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
title_short Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
title_full Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
title_fullStr Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
title_full_unstemmed Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
title_sort Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
author Müller, Iuri Hermes
author_facet Müller, Iuri Hermes
author_role author
dc.contributor.none.fl_str_mv Tonatto, Maikson Luiz Passaia
http://lattes.cnpq.br/1639513829733095
Amico, Sandro Campos
Almeida Júnior , José Humberto Santos
Santos, Tiago dos
dc.contributor.author.fl_str_mv Müller, Iuri Hermes
dc.subject.por.fl_str_mv Otimização estrutural
Rede neural artificial
Algoritmo genético
Modelagem por deposição fundida
Materiais compósitos
Structural optimization
Artificial neural network
Genetic algorithm
Fused deposition modelling
Composite materials
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
topic Otimização estrutural
Rede neural artificial
Algoritmo genético
Modelagem por deposição fundida
Materiais compósitos
Structural optimization
Artificial neural network
Genetic algorithm
Fused deposition modelling
Composite materials
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
description The use of computational optimization methods in structural design, employing surrogate models based on artificial neural networks (ANNs), is a promising approach for achieving efficient and cost-effective solutions compared to traditional optimization relying solely on the finite element method (FEM). These methods are particularly effective for composite material structures, which can be tailored to meet varying mechanical requirements and are fabricated via fused deposition modeling (FDM), such as 3D printing, due to their flexibility and capability to efficiently produce complex geometries. This study aims to implement a numerical optimization algorithm combined with an ANN trained and tested using a database to optimize the support arm of an unmanned aerial vehicle (UAV), manufactured using FDM. The methodology was divided into two main stages. In the first stage, an algorithm was developed in Python to generate a database from FEM simulations conducted in ABAQUS software. These simulations considered the arm, fabricated using polylactic acid (PLA) as the constituent material, with one fixed end and the other subjected to thrust and torsional loads, replicating the UAV's operational conditions. Four geometric parameters of the arm (structure height and width, thickness, and the number of diagonal reinforcement cells) were modified to obtain the masses and stiffness values for each configuration. In the second stage, the algorithm was enhanced by incorporating three additional geometric variables (thickness of the edges and bottom reinforcement, and width of the top reinforcement), resulting in a more extensive database. This expanded dataset was used to train the ANN, which predicted masses and stiffness values based on the geometric variables. The multi-objective optimization problem was then defined using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to minimize mass and maximize stiffness, constrained by the geometric variables, with the ANN employed to evaluate the multi-objective function as a surrogate for FEM. From the solutions obtained on the Pareto front, one was selected for experimental validation. The optimized and standard models were designed in computer-aided design (CAD) software, fabricated using FDM with PLA, and subjected to bending tests to replicate the conditions implemented in the FEM analyses. The results demonstrated that the ANN exhibited high accuracy, with correlation coefficients of 0.99 for stiffness and 0.99 for mass, reducing analysis time by 99.65% compared to FEM. The optimized model showed an average specific stiffness increase of 51.14% and a mass reduction of 42.13% compared to the standard model. Finally, the results indicated that the proposed methodology is efficient in determining optimized solutions. While the database generation required substantial computational time, analyses conducted using the trained neural network demonstrated a significant reduction in processing time. Moreover, the proposed method is adaptable for application in various engineering projects involving composite materials
publishDate 2024
dc.date.none.fl_str_mv 2024-10-01
2025-01-09T15:22:59Z
2025-01-09T15:22:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/33781
dc.identifier.dark.fl_str_mv ark:/26339/001300001c480
url http://repositorio.ufsm.br/handle/1/33781
identifier_str_mv ark:/26339/001300001c480
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Mecânica
UFSM
Programa de Pós-Graduação em Engenharia Ambiental
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Mecânica
UFSM
Programa de Pós-Graduação em Engenharia Ambiental
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847103668807008256