Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Dissertação |
| Idioma: | por |
| Título da fonte: | Manancial - Repositório Digital da UFSM |
| dARK ID: | ark:/26339/001300001c480 |
| Texto Completo: | http://repositorio.ufsm.br/handle/1/33781 |
Resumo: | The use of computational optimization methods in structural design, employing surrogate models based on artificial neural networks (ANNs), is a promising approach for achieving efficient and cost-effective solutions compared to traditional optimization relying solely on the finite element method (FEM). These methods are particularly effective for composite material structures, which can be tailored to meet varying mechanical requirements and are fabricated via fused deposition modeling (FDM), such as 3D printing, due to their flexibility and capability to efficiently produce complex geometries. This study aims to implement a numerical optimization algorithm combined with an ANN trained and tested using a database to optimize the support arm of an unmanned aerial vehicle (UAV), manufactured using FDM. The methodology was divided into two main stages. In the first stage, an algorithm was developed in Python to generate a database from FEM simulations conducted in ABAQUS software. These simulations considered the arm, fabricated using polylactic acid (PLA) as the constituent material, with one fixed end and the other subjected to thrust and torsional loads, replicating the UAV's operational conditions. Four geometric parameters of the arm (structure height and width, thickness, and the number of diagonal reinforcement cells) were modified to obtain the masses and stiffness values for each configuration. In the second stage, the algorithm was enhanced by incorporating three additional geometric variables (thickness of the edges and bottom reinforcement, and width of the top reinforcement), resulting in a more extensive database. This expanded dataset was used to train the ANN, which predicted masses and stiffness values based on the geometric variables. The multi-objective optimization problem was then defined using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to minimize mass and maximize stiffness, constrained by the geometric variables, with the ANN employed to evaluate the multi-objective function as a surrogate for FEM. From the solutions obtained on the Pareto front, one was selected for experimental validation. The optimized and standard models were designed in computer-aided design (CAD) software, fabricated using FDM with PLA, and subjected to bending tests to replicate the conditions implemented in the FEM analyses. The results demonstrated that the ANN exhibited high accuracy, with correlation coefficients of 0.99 for stiffness and 0.99 for mass, reducing analysis time by 99.65% compared to FEM. The optimized model showed an average specific stiffness increase of 51.14% and a mass reduction of 42.13% compared to the standard model. Finally, the results indicated that the proposed methodology is efficient in determining optimized solutions. While the database generation required substantial computational time, analyses conducted using the trained neural network demonstrated a significant reduction in processing time. Moreover, the proposed method is adaptable for application in various engineering projects involving composite materials |
| id |
UFSM_bf447c58b18d2336752cb3e4a8a5476f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufsm.br:1/33781 |
| network_acronym_str |
UFSM |
| network_name_str |
Manancial - Repositório Digital da UFSM |
| repository_id_str |
|
| spelling |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genéticoImplementation of a surrogate model for structural optimization based on artificial neural network and genetic algorithmOtimização estruturalRede neural artificialAlgoritmo genéticoModelagem por deposição fundidaMateriais compósitosStructural optimizationArtificial neural networkGenetic algorithmFused deposition modellingComposite materialsCNPQ::ENGENHARIAS::ENGENHARIA MECANICAThe use of computational optimization methods in structural design, employing surrogate models based on artificial neural networks (ANNs), is a promising approach for achieving efficient and cost-effective solutions compared to traditional optimization relying solely on the finite element method (FEM). These methods are particularly effective for composite material structures, which can be tailored to meet varying mechanical requirements and are fabricated via fused deposition modeling (FDM), such as 3D printing, due to their flexibility and capability to efficiently produce complex geometries. This study aims to implement a numerical optimization algorithm combined with an ANN trained and tested using a database to optimize the support arm of an unmanned aerial vehicle (UAV), manufactured using FDM. The methodology was divided into two main stages. In the first stage, an algorithm was developed in Python to generate a database from FEM simulations conducted in ABAQUS software. These simulations considered the arm, fabricated using polylactic acid (PLA) as the constituent material, with one fixed end and the other subjected to thrust and torsional loads, replicating the UAV's operational conditions. Four geometric parameters of the arm (structure height and width, thickness, and the number of diagonal reinforcement cells) were modified to obtain the masses and stiffness values for each configuration. In the second stage, the algorithm was enhanced by incorporating three additional geometric variables (thickness of the edges and bottom reinforcement, and width of the top reinforcement), resulting in a more extensive database. This expanded dataset was used to train the ANN, which predicted masses and stiffness values based on the geometric variables. The multi-objective optimization problem was then defined using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to minimize mass and maximize stiffness, constrained by the geometric variables, with the ANN employed to evaluate the multi-objective function as a surrogate for FEM. From the solutions obtained on the Pareto front, one was selected for experimental validation. The optimized and standard models were designed in computer-aided design (CAD) software, fabricated using FDM with PLA, and subjected to bending tests to replicate the conditions implemented in the FEM analyses. The results demonstrated that the ANN exhibited high accuracy, with correlation coefficients of 0.99 for stiffness and 0.99 for mass, reducing analysis time by 99.65% compared to FEM. The optimized model showed an average specific stiffness increase of 51.14% and a mass reduction of 42.13% compared to the standard model. Finally, the results indicated that the proposed methodology is efficient in determining optimized solutions. While the database generation required substantial computational time, analyses conducted using the trained neural network demonstrated a significant reduction in processing time. Moreover, the proposed method is adaptable for application in various engineering projects involving composite materialsCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO uso de métodos computacionais de otimização em projetos estruturais, utilizando modelos substitutos baseados em redes neurais artificiais (do inglês, ANN), é uma abordagem promissora para soluções eficientes e com economia de custo computacional, se comparada à otimização tradicional com uso apenas do método de elementos finitos (do inglês, FEM). Esses métodos são particularmente eficazes em estruturas de materiais compósitos, que são adaptáveis a atender diferentes requisitos mecânicos, fabricadas por modelagem por deposição fundida (do inglês, FDM), como a impressão 3D, em função de sua flexibilidade e capacidade de fabricação eficiente de geometrias complexas. Este trabalho visa implementar um algoritmo de otimização numérica, combinado com uma ANN treinada e testada a partir de um banco de dados, para otimizar a haste de sustentação de um veículo aéreo não tripulado (do inglês, UAV), fabricada por FDM. A metodologia foi dividida em duas etapas. A primeira focou no desenvolvimento de um algoritmo em Python para gerar um banco de dados a partir de simulações por FEM no software ABAQUS. Essas simulações consideraram a haste, fabricada em PLA (ácido polilático) como material constituinte, com uma extremidade fixa e outra submetida a uma força de empuxo e a uma torção, replicando as condições de operação do UAV. Foram modificados quatro parâmetros geométricos da haste (altura e largura da estrutura, e espessura e quantidade de células de reforço diagonais), obtendo-se massas e rigidezes para cada configuração. Na segunda etapa, o algoritmo foi aprimorado com três novas variáveis geométricas (espessura das bordas e do reforço inferior e largura do reforço superior), gerando um banco de dados mais amplo. Este foi usado para treinar a ANN, que previu massas e rigidezes com base nas variáveis geométricas. O problema de otimização multiobjetivo foi então definido, utilizando Algoritmo Genético de Ordenação Não Dominada II (NSGA-II), para minimizar a massa e maximizar a rigidez, a partir de restrições sobre as variáveis geométricas, e empregando a ANN na avaliação da função multiobjetivo, em substituição ao FEM. Das soluções encontradas em uma frente de Pareto, uma foi selecionada para validação experimental, e os modelos otimizado e padrão foram desenhados em CAD (computer aided design), fabricados por FDM em PLA e submetidos a ensaios de flexão, de modo a reproduzir as condições implementas nas análises por FEM. Os resultados mostraram que a ANN teve alta acuracidade, com correlações de 0,99 para rigidez e 0,99 para massa, e reduziu o tempo de análise em 99,65% em comparação ao FEM. O modelo otimizado apresentou um aumento em média percentual da rigidez específica em 51.14% e uma redução de 42,13% na massa em relação ao modelo padrão. Por fim, os resultados mostraram que a metodologia proposta é eficiente na determinação de soluções otimizadas e, apesar de a geração do banco de dados consumir expressivo tempo computacional, as análises com a rede neural treinada apresentaram significativa redução de tempo. Além disso, o método proposto é adaptável ao emprego em diferentes projetos de engenharia baseado em materiais compósitos.Universidade Federal de Santa MariaBrasilEngenharia MecânicaUFSMPrograma de Pós-Graduação em Engenharia AmbientalCentro de TecnologiaTonatto, Maikson Luiz Passaiahttp://lattes.cnpq.br/1639513829733095Amico, Sandro CamposAlmeida Júnior , José Humberto SantosSantos, Tiago dosMüller, Iuri Hermes2025-01-09T15:22:59Z2025-01-09T15:22:59Z2024-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/33781ark:/26339/001300001c480porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2025-01-09T15:22:59Zoai:repositorio.ufsm.br:1/33781Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2025-01-09T15:22:59Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
| dc.title.none.fl_str_mv |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético Implementation of a surrogate model for structural optimization based on artificial neural network and genetic algorithm |
| title |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético |
| spellingShingle |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético Müller, Iuri Hermes Otimização estrutural Rede neural artificial Algoritmo genético Modelagem por deposição fundida Materiais compósitos Structural optimization Artificial neural network Genetic algorithm Fused deposition modelling Composite materials CNPQ::ENGENHARIAS::ENGENHARIA MECANICA |
| title_short |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético |
| title_full |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético |
| title_fullStr |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético |
| title_full_unstemmed |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético |
| title_sort |
Implementação de modelo substituto para otimização estrutural baseada em rede neural artificial e algoritmo genético |
| author |
Müller, Iuri Hermes |
| author_facet |
Müller, Iuri Hermes |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Tonatto, Maikson Luiz Passaia http://lattes.cnpq.br/1639513829733095 Amico, Sandro Campos Almeida Júnior , José Humberto Santos Santos, Tiago dos |
| dc.contributor.author.fl_str_mv |
Müller, Iuri Hermes |
| dc.subject.por.fl_str_mv |
Otimização estrutural Rede neural artificial Algoritmo genético Modelagem por deposição fundida Materiais compósitos Structural optimization Artificial neural network Genetic algorithm Fused deposition modelling Composite materials CNPQ::ENGENHARIAS::ENGENHARIA MECANICA |
| topic |
Otimização estrutural Rede neural artificial Algoritmo genético Modelagem por deposição fundida Materiais compósitos Structural optimization Artificial neural network Genetic algorithm Fused deposition modelling Composite materials CNPQ::ENGENHARIAS::ENGENHARIA MECANICA |
| description |
The use of computational optimization methods in structural design, employing surrogate models based on artificial neural networks (ANNs), is a promising approach for achieving efficient and cost-effective solutions compared to traditional optimization relying solely on the finite element method (FEM). These methods are particularly effective for composite material structures, which can be tailored to meet varying mechanical requirements and are fabricated via fused deposition modeling (FDM), such as 3D printing, due to their flexibility and capability to efficiently produce complex geometries. This study aims to implement a numerical optimization algorithm combined with an ANN trained and tested using a database to optimize the support arm of an unmanned aerial vehicle (UAV), manufactured using FDM. The methodology was divided into two main stages. In the first stage, an algorithm was developed in Python to generate a database from FEM simulations conducted in ABAQUS software. These simulations considered the arm, fabricated using polylactic acid (PLA) as the constituent material, with one fixed end and the other subjected to thrust and torsional loads, replicating the UAV's operational conditions. Four geometric parameters of the arm (structure height and width, thickness, and the number of diagonal reinforcement cells) were modified to obtain the masses and stiffness values for each configuration. In the second stage, the algorithm was enhanced by incorporating three additional geometric variables (thickness of the edges and bottom reinforcement, and width of the top reinforcement), resulting in a more extensive database. This expanded dataset was used to train the ANN, which predicted masses and stiffness values based on the geometric variables. The multi-objective optimization problem was then defined using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to minimize mass and maximize stiffness, constrained by the geometric variables, with the ANN employed to evaluate the multi-objective function as a surrogate for FEM. From the solutions obtained on the Pareto front, one was selected for experimental validation. The optimized and standard models were designed in computer-aided design (CAD) software, fabricated using FDM with PLA, and subjected to bending tests to replicate the conditions implemented in the FEM analyses. The results demonstrated that the ANN exhibited high accuracy, with correlation coefficients of 0.99 for stiffness and 0.99 for mass, reducing analysis time by 99.65% compared to FEM. The optimized model showed an average specific stiffness increase of 51.14% and a mass reduction of 42.13% compared to the standard model. Finally, the results indicated that the proposed methodology is efficient in determining optimized solutions. While the database generation required substantial computational time, analyses conducted using the trained neural network demonstrated a significant reduction in processing time. Moreover, the proposed method is adaptable for application in various engineering projects involving composite materials |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-10-01 2025-01-09T15:22:59Z 2025-01-09T15:22:59Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/33781 |
| dc.identifier.dark.fl_str_mv |
ark:/26339/001300001c480 |
| url |
http://repositorio.ufsm.br/handle/1/33781 |
| identifier_str_mv |
ark:/26339/001300001c480 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Mecânica UFSM Programa de Pós-Graduação em Engenharia Ambiental Centro de Tecnologia |
| publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Mecânica UFSM Programa de Pós-Graduação em Engenharia Ambiental Centro de Tecnologia |
| dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
| instname_str |
Universidade Federal de Santa Maria (UFSM) |
| instacron_str |
UFSM |
| institution |
UFSM |
| reponame_str |
Manancial - Repositório Digital da UFSM |
| collection |
Manancial - Repositório Digital da UFSM |
| repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
| repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br |
| _version_ |
1847103668807008256 |