Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos

Detalhes bibliográficos
Autor(a) principal: Schmitz, Magdiel
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/00130000125bv
Texto Completo: http://repositorio.ufsm.br/handle/1/22691
Resumo: The main objective of the electric distribution system operators is to supply energy to the loads at the lowest generation cost over a given time horizon, anticipating sudden changes in demand and generation, a problem known as Dynamic Economic Dispatch (DED). When coupling the DED objectives to the network operational constraints, such as voltage levels and load limits of the lines, we have the problem known as Dynamic Optimal Power Flow (DOPF). In an emergency scenario, with damaged lines or equipments, the healthy regions of the network with Distributed Energy Resources (DERs) can operate islanding from the main grid, using MicroGrid (MG) concepts. In this scenario, the demand constraint is flexible and the DED follows a price signal, using inter-temporal technologies to maximize the power utility’s profit; with the DOPF being known as Price-Based DOPF (PB-DOPF). Due to limited generation or high attendance cost, load shedding can be performed in specific moments. Simultaneously with the operation of MGs, repair crews must be dispatched to affected locations to repair and restore the system to its normal operating state, which is known as emergency order scheduling (EOS) problem. Although PB-DOPF and EOS problems are interdependent in real-world applications, due to the associated high computational complexity, they are traditionally addressed in decoupled manner by utilities. Thus, this work proposes a mathematical model for the co-optimization of these problems in order to minimize the cost of PB-DOPF in a horizon. The PB-DOPF with EOS is formulated as a Mixed-Integer Linear Programming (MILP) model, with a three-phase power flow. The linear modeling offers, among other advantages, a high-speed calculation and allows to know the quality of the solution, critical factors in emergency scenarios. An algorithm is also proposed to perform the PB-DOPF and the repair crew dispatches over a given horizon, in both normal and emergency scenarios, integrating a pre-scheduling step to deal with computational complexity. The route is systematically released at each iteration and the evolution of the solution dynamically monitored. The proposed model is tested on three-phase unbalanced IEEE 123-bus and IEEE 8500-node distribution systems, both modified with additional DER systems. The algorithm is also compared with two variations, with the results highlighting its effectiveness.
id UFSM_509b221f6ce578a86ed43b00d9bcdb80
oai_identifier_str oai:repositorio.ufsm.br:1/22691
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparosCo-optimization of price-based dynamic optimal power flow with repair schedulingSistema de distribuiçãoRecursos energéticos distribuídosFluxo de potência ótimo dinâmico baseado em preçoAgendamento de ordens emergenciaisProgramação linear inteira mistaDistribution systemDistributed energy resourcesPrice-based dynamic optimal power flowEmergency orders schedulingMixed-integer linear programmingCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe main objective of the electric distribution system operators is to supply energy to the loads at the lowest generation cost over a given time horizon, anticipating sudden changes in demand and generation, a problem known as Dynamic Economic Dispatch (DED). When coupling the DED objectives to the network operational constraints, such as voltage levels and load limits of the lines, we have the problem known as Dynamic Optimal Power Flow (DOPF). In an emergency scenario, with damaged lines or equipments, the healthy regions of the network with Distributed Energy Resources (DERs) can operate islanding from the main grid, using MicroGrid (MG) concepts. In this scenario, the demand constraint is flexible and the DED follows a price signal, using inter-temporal technologies to maximize the power utility’s profit; with the DOPF being known as Price-Based DOPF (PB-DOPF). Due to limited generation or high attendance cost, load shedding can be performed in specific moments. Simultaneously with the operation of MGs, repair crews must be dispatched to affected locations to repair and restore the system to its normal operating state, which is known as emergency order scheduling (EOS) problem. Although PB-DOPF and EOS problems are interdependent in real-world applications, due to the associated high computational complexity, they are traditionally addressed in decoupled manner by utilities. Thus, this work proposes a mathematical model for the co-optimization of these problems in order to minimize the cost of PB-DOPF in a horizon. The PB-DOPF with EOS is formulated as a Mixed-Integer Linear Programming (MILP) model, with a three-phase power flow. The linear modeling offers, among other advantages, a high-speed calculation and allows to know the quality of the solution, critical factors in emergency scenarios. An algorithm is also proposed to perform the PB-DOPF and the repair crew dispatches over a given horizon, in both normal and emergency scenarios, integrating a pre-scheduling step to deal with computational complexity. The route is systematically released at each iteration and the evolution of the solution dynamically monitored. The proposed model is tested on three-phase unbalanced IEEE 123-bus and IEEE 8500-node distribution systems, both modified with additional DER systems. The algorithm is also compared with two variations, with the results highlighting its effectiveness.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO principal objetivo dos operadores do sistema elétrico de distribuição é o de suprir energia às cargas ao menor custo de geração em um dado horizonte de tempo, antecipando mudanças repentinas na demanda e na geração, problema conhecido como Despacho Econômico Dinâmico (DED). Ao acoplar os objetivos do DED às restrições operacionais da rede elétrica, tais como níveis de tensão e limites de carregamento das linhas, têm-se o problema conhecido como Fluxo de Potência Ótimo Dinâmico (FPOD). Em um cenário emergencial, com linhas ou equipamentos danificados, as regiões saudáveis da rede com Recursos Energéticos Distribuídos (REDs) podem operar de modo ilhado da rede principal, usando os conceitos de MicroGrid (MG). Nesse cenário, a restrição de demanda é flexível e o DED segue um sinal de preço, usando tecnologias intertemporais para maximizar o lucro da concessionária de energia; com o FPOD sendo definido como FPOD Baseado em Preço (FPOD-BP). Devido à geração limitada ou ao elevado custo de atendimento, o corte de carga pode ser realizado em momentos específicos. Simultaneamente à operação das MGs, equipes de reparo devem ser despachadas aos locais afetados para reparar e restaurar o sistema ao seu estado operacional normal, problema conhecido como Agendamento de Ordens Emergenciais (AOE). Apesar de os problemas de FPOD-BP e AOE serem interdependentes em aplicações do mundo real, devido à elevada complexidade computacional associada, eles são tradicionalmente tratados de maneira desacoplada pelas concessionárias. Sendo assim, este trabalho propõe um modelo matemático para a co-otimização desses problemas, com o objetivo de minimizar o custo do FPOD-BP em um horizonte. O FPOD-BP com AOE é formulado como um modelo de Programação Linear Inteira Mista (PLIM), com fluxo de potência trifásico desbalanceado. A modelagem linear oferece, entre outras vantagens, uma elevada velocidade de cálculo e permite conhecer a qualidade da solução, fatores críticos em cenários emergenciais. É proposto ainda um algoritmo para realizar os despachos do FPOD-BP e das equipes de reparo em um dado horizonte, tanto em cenários normais quanto emergenciais, integrando uma etapa de pré-agendamento para lidar com a complexidade computacional. A rota é sistematicamente liberada a cada iteração e a evolução da solução monitorada dinamicamente. O modelo proposto é testado nos sistemas de distribuição trifásicos desbalanceados IEEE 123-barras e IEEE 8500-nós, ambos modificados com REDs adicionais. O algoritmo também é comparado com duas variações, com os resultados destacando a sua eficácia.Universidade Federal de Santa MariaBrasilEngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCentro de TecnologiaBernardon, Daniel Pinheirohttp://lattes.cnpq.br/6004612278397270Lyra Filho, ChristianoSperandio, MauricioPfitscher, Luciano LopesGarcia, Vinícius JacquesSchmitz, Magdiel2021-11-03T18:59:37Z2021-11-03T18:59:37Z2020-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22691ark:/26339/00130000125bvporAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-11-04T06:04:33Zoai:repositorio.ufsm.br:1/22691Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2021-11-04T06:04:33Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos
Co-optimization of price-based dynamic optimal power flow with repair scheduling
title Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos
spellingShingle Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos
Schmitz, Magdiel
Sistema de distribuição
Recursos energéticos distribuídos
Fluxo de potência ótimo dinâmico baseado em preço
Agendamento de ordens emergenciais
Programação linear inteira mista
Distribution system
Distributed energy resources
Price-based dynamic optimal power flow
Emergency orders scheduling
Mixed-integer linear programming
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos
title_full Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos
title_fullStr Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos
title_full_unstemmed Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos
title_sort Co-otimização de fluxo de potência ótimo dinâmico baseado em preço com agendamento de reparos
author Schmitz, Magdiel
author_facet Schmitz, Magdiel
author_role author
dc.contributor.none.fl_str_mv Bernardon, Daniel Pinheiro
http://lattes.cnpq.br/6004612278397270
Lyra Filho, Christiano
Sperandio, Mauricio
Pfitscher, Luciano Lopes
Garcia, Vinícius Jacques
dc.contributor.author.fl_str_mv Schmitz, Magdiel
dc.subject.por.fl_str_mv Sistema de distribuição
Recursos energéticos distribuídos
Fluxo de potência ótimo dinâmico baseado em preço
Agendamento de ordens emergenciais
Programação linear inteira mista
Distribution system
Distributed energy resources
Price-based dynamic optimal power flow
Emergency orders scheduling
Mixed-integer linear programming
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Sistema de distribuição
Recursos energéticos distribuídos
Fluxo de potência ótimo dinâmico baseado em preço
Agendamento de ordens emergenciais
Programação linear inteira mista
Distribution system
Distributed energy resources
Price-based dynamic optimal power flow
Emergency orders scheduling
Mixed-integer linear programming
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description The main objective of the electric distribution system operators is to supply energy to the loads at the lowest generation cost over a given time horizon, anticipating sudden changes in demand and generation, a problem known as Dynamic Economic Dispatch (DED). When coupling the DED objectives to the network operational constraints, such as voltage levels and load limits of the lines, we have the problem known as Dynamic Optimal Power Flow (DOPF). In an emergency scenario, with damaged lines or equipments, the healthy regions of the network with Distributed Energy Resources (DERs) can operate islanding from the main grid, using MicroGrid (MG) concepts. In this scenario, the demand constraint is flexible and the DED follows a price signal, using inter-temporal technologies to maximize the power utility’s profit; with the DOPF being known as Price-Based DOPF (PB-DOPF). Due to limited generation or high attendance cost, load shedding can be performed in specific moments. Simultaneously with the operation of MGs, repair crews must be dispatched to affected locations to repair and restore the system to its normal operating state, which is known as emergency order scheduling (EOS) problem. Although PB-DOPF and EOS problems are interdependent in real-world applications, due to the associated high computational complexity, they are traditionally addressed in decoupled manner by utilities. Thus, this work proposes a mathematical model for the co-optimization of these problems in order to minimize the cost of PB-DOPF in a horizon. The PB-DOPF with EOS is formulated as a Mixed-Integer Linear Programming (MILP) model, with a three-phase power flow. The linear modeling offers, among other advantages, a high-speed calculation and allows to know the quality of the solution, critical factors in emergency scenarios. An algorithm is also proposed to perform the PB-DOPF and the repair crew dispatches over a given horizon, in both normal and emergency scenarios, integrating a pre-scheduling step to deal with computational complexity. The route is systematically released at each iteration and the evolution of the solution dynamically monitored. The proposed model is tested on three-phase unbalanced IEEE 123-bus and IEEE 8500-node distribution systems, both modified with additional DER systems. The algorithm is also compared with two variations, with the results highlighting its effectiveness.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-21
2021-11-03T18:59:37Z
2021-11-03T18:59:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/22691
dc.identifier.dark.fl_str_mv ark:/26339/00130000125bv
url http://repositorio.ufsm.br/handle/1/22691
identifier_str_mv ark:/26339/00130000125bv
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847103622338314240