Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas
| Main Author: | |
|---|---|
| Publication Date: | 2022 |
| Language: | por |
| Source: | Manancial - Repositório Digital da UFSM |
| dARK ID: | ark:/26339/00130000132c8 |
| Download full: | http://repositorio.ufsm.br/handle/1/25954 |
Summary: | In practically all machines used inside a factory there is an electric motor, responsible for moving components. As with other mechanisms, engines are subject to operating failures. With the extensive use of these equipments to meet current manufacturing needs, it is essential that a maintenance stop, even when scheduled and routine, is an event that is atypical of the day-today routine of a large company or industry and, as a result, generates economic losses. With the rise of Industry 4.0, the use of computational methods to predict and prevent unexpected stops is becoming more and more abundant. Machine learning methods are being developed regularly to meet the needs for systems that predict equipment failures. One of the main steps for the development of such techniques is the learning itself. These learnings depend on a training dataset, that must be as effective as possible to develop efficient and reliable predictive systems. The objective of this work is to develop a computational model to simulate and extract data from an electric motor under different operating conditions, in order to study which parameters extracted from this are the most suitable for the development of an effective database. To achieve this objective, a study of numerical models of electric motors with five degrees of freedom was carried out, as well as a study of data statistics to have a better quantitative understanding of the data extracted from the developed computational system. Simulations were carried out where the engine was placed under different operating conditions, varied structural characteristics and different types of data were extracted, and such data evaluated in a quantitative way. For this experiment, the methodology used covered the open use programming language Python for the application of numerical models, in addition to validation through bibliographic data for the proposed model. In it, the result of one of the degrees of freedom developed in the proposed model did not observe the sensitivity to the structural parameter, two parameters were more sensitive than the other two, showing the method to be effective in the study and development of a database, but not used in real cases, due to the different assumptions made in the study. Keywords: Simulation. |
| id |
UFSM_0f1ba2e60a34b9bea573de81c81bc483 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufsm.br:1/25954 |
| network_acronym_str |
UFSM |
| network_name_str |
Manancial - Repositório Digital da UFSM |
| repository_id_str |
|
| spelling |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhasNumerical simulation of electric motors and database construction for fault prognosis platformSimulaçãoMotores elétricosBanco de dadosAprendizado de máquinasPrognóstico de falhasSimulationEletrical motorsDatabaseMachine learningFault prognosisCNPQ::ENGENHARIAS::ENGENHARIA MECANICAIn practically all machines used inside a factory there is an electric motor, responsible for moving components. As with other mechanisms, engines are subject to operating failures. With the extensive use of these equipments to meet current manufacturing needs, it is essential that a maintenance stop, even when scheduled and routine, is an event that is atypical of the day-today routine of a large company or industry and, as a result, generates economic losses. With the rise of Industry 4.0, the use of computational methods to predict and prevent unexpected stops is becoming more and more abundant. Machine learning methods are being developed regularly to meet the needs for systems that predict equipment failures. One of the main steps for the development of such techniques is the learning itself. These learnings depend on a training dataset, that must be as effective as possible to develop efficient and reliable predictive systems. The objective of this work is to develop a computational model to simulate and extract data from an electric motor under different operating conditions, in order to study which parameters extracted from this are the most suitable for the development of an effective database. To achieve this objective, a study of numerical models of electric motors with five degrees of freedom was carried out, as well as a study of data statistics to have a better quantitative understanding of the data extracted from the developed computational system. Simulations were carried out where the engine was placed under different operating conditions, varied structural characteristics and different types of data were extracted, and such data evaluated in a quantitative way. For this experiment, the methodology used covered the open use programming language Python for the application of numerical models, in addition to validation through bibliographic data for the proposed model. In it, the result of one of the degrees of freedom developed in the proposed model did not observe the sensitivity to the structural parameter, two parameters were more sensitive than the other two, showing the method to be effective in the study and development of a database, but not used in real cases, due to the different assumptions made in the study. Keywords: Simulation.Em praticamente todas as máquinas utilizadas dentro de uma fábrica existe um motor elétrico, responsável pela movimentação de componentes. Assim como demais mecanismos, os motores estão sujeitos a falhas em operação. Com a extensa utilização destes equipamentos para suprir as necessidades atuais de manufatura, é imprescindível que a realização de uma parada de manutenção, mesmo quando programada e rotineira, é um evento atípico à normalidade do dia a dia de uma grande empresa ou indústria e, com isso, gera perdas econômicas. Com a ascensão da indústria 4.0, a utilização de métodos computacionais para prever e impedir paradas inesperadas está cada vez mais abundante. Métodos de aprendizado de máquinas estão sendo desenvolvidos a todo momento para suprir a necessidade de sistemas que preveem falhas de equipamentos. Um dos principais passos para o desenvolvimento de tais técnicas é o aprendizado propriamente dito. Estes aprendizados dependem de um conjunto de dados de treinamento, que devem ser o mais eficaz possível para ser desenvolvido um modelo preditivo eficiente e confiável. O objetivo deste trabalho é desenvolver um modelo computacional para simular e extrair dados de um motor elétrico sob diferentes condições de funcionamento, para assim, se estudar quais parâmetros extraídos desse são os mais aptos para o desenvolvimento de um banco de dados eficaz. Para atingir este objetivo, foi feito um estudo de modelos numéricos de motores elétricos com cinco graus de liberdade, bem como um estudo da estatística de dados para se ter um melhor entendimento quantitativo dos dados extraídos do sistema computacional desenvolvido. Foram realizadas simulações onde o motor foi colocado sob diferentes condições de funcionamento variado características estruturais e extraídos diferentes tipos de dados e avaliado tais dados de forma quantitativa. Para este experimento, a metodologia utilizada abrangeu a linguagem de programação de utilização aberta Python para a aplicação dos modelos numéricos, além de validação através de dados bibliográficos para o modelo proposto. Nele, o resultado de um dos graus de liberdade desenvolvido no modelo proposto não observou a sensibilidade ao parâmetro estrutural, sendo que dois parâmetros se mostraram mais sensíveis do que os outros dois, mostrando-se o método como eficaz no estudo e desenvolvimento de banco de dados, porém sem utilização em casos reais, devido às diversas assunções realizadas no estudo.Universidade Federal de Santa MariaBrasilUFSMCentro de TecnologiaSouza, Carlos Eduardo deSilveira, Marcos Vinícius Quinteiro2022-08-23T17:49:54Z2022-08-23T17:49:54Z2022-08-012022-08-18Trabalho de Conclusão de Curso de Graduaçãoinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://repositorio.ufsm.br/handle/1/25954ark:/26339/00130000132c8porinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-09-21T16:36:40Zoai:repositorio.ufsm.br:1/25954Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2022-09-21T16:36:40Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
| dc.title.none.fl_str_mv |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas Numerical simulation of electric motors and database construction for fault prognosis platform |
| title |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas |
| spellingShingle |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas Silveira, Marcos Vinícius Quinteiro Simulação Motores elétricos Banco de dados Aprendizado de máquinas Prognóstico de falhas Simulation Eletrical motors Database Machine learning Fault prognosis CNPQ::ENGENHARIAS::ENGENHARIA MECANICA |
| title_short |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas |
| title_full |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas |
| title_fullStr |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas |
| title_full_unstemmed |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas |
| title_sort |
Simulação numérica de motores elétricos e construção de banco de dados para plataforma de prognóstico de falhas |
| author |
Silveira, Marcos Vinícius Quinteiro |
| author_facet |
Silveira, Marcos Vinícius Quinteiro |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Souza, Carlos Eduardo de |
| dc.contributor.author.fl_str_mv |
Silveira, Marcos Vinícius Quinteiro |
| dc.subject.por.fl_str_mv |
Simulação Motores elétricos Banco de dados Aprendizado de máquinas Prognóstico de falhas Simulation Eletrical motors Database Machine learning Fault prognosis CNPQ::ENGENHARIAS::ENGENHARIA MECANICA |
| topic |
Simulação Motores elétricos Banco de dados Aprendizado de máquinas Prognóstico de falhas Simulation Eletrical motors Database Machine learning Fault prognosis CNPQ::ENGENHARIAS::ENGENHARIA MECANICA |
| description |
In practically all machines used inside a factory there is an electric motor, responsible for moving components. As with other mechanisms, engines are subject to operating failures. With the extensive use of these equipments to meet current manufacturing needs, it is essential that a maintenance stop, even when scheduled and routine, is an event that is atypical of the day-today routine of a large company or industry and, as a result, generates economic losses. With the rise of Industry 4.0, the use of computational methods to predict and prevent unexpected stops is becoming more and more abundant. Machine learning methods are being developed regularly to meet the needs for systems that predict equipment failures. One of the main steps for the development of such techniques is the learning itself. These learnings depend on a training dataset, that must be as effective as possible to develop efficient and reliable predictive systems. The objective of this work is to develop a computational model to simulate and extract data from an electric motor under different operating conditions, in order to study which parameters extracted from this are the most suitable for the development of an effective database. To achieve this objective, a study of numerical models of electric motors with five degrees of freedom was carried out, as well as a study of data statistics to have a better quantitative understanding of the data extracted from the developed computational system. Simulations were carried out where the engine was placed under different operating conditions, varied structural characteristics and different types of data were extracted, and such data evaluated in a quantitative way. For this experiment, the methodology used covered the open use programming language Python for the application of numerical models, in addition to validation through bibliographic data for the proposed model. In it, the result of one of the degrees of freedom developed in the proposed model did not observe the sensitivity to the structural parameter, two parameters were more sensitive than the other two, showing the method to be effective in the study and development of a database, but not used in real cases, due to the different assumptions made in the study. Keywords: Simulation. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-08-23T17:49:54Z 2022-08-23T17:49:54Z 2022-08-01 2022-08-18 |
| dc.type.driver.fl_str_mv |
Trabalho de Conclusão de Curso de Graduação |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/25954 |
| dc.identifier.dark.fl_str_mv |
ark:/26339/00130000132c8 |
| url |
http://repositorio.ufsm.br/handle/1/25954 |
| identifier_str_mv |
ark:/26339/00130000132c8 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil UFSM Centro de Tecnologia |
| publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil UFSM Centro de Tecnologia |
| dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
| instname_str |
Universidade Federal de Santa Maria (UFSM) |
| instacron_str |
UFSM |
| institution |
UFSM |
| reponame_str |
Manancial - Repositório Digital da UFSM |
| collection |
Manancial - Repositório Digital da UFSM |
| repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
| repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br |
| _version_ |
1847103628162105344 |