Obtaining zeros of functions using Python
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2020 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | por |
| Título da fonte: | Revista Ciência e Natura (Online) |
| Texto Completo: | https://periodicos.ufsm.br/cienciaenatura/article/view/40478 |
Resumo: | HNumerical Methods are very important in Engineering because many real problems have complicated mathematical models that are difficult to be solved analytically. Thus, the methods of resolution for several problems that are studied in the discipline of Computational Numerical Methods, as well as in the discipline of Algorithms, are indispensable for the formation of a future Engineer. Among the several numerical methods that exist, the following are the methods for obtaining zeros of functions: Bisection, False Position and Newton-Raphson. The Bisection method consists of defining the range containing a root and, using the arithmetic mean, dividing it until the desired precision is reached. In the case of the False Position method, the weighted arithmetic mean is used to obtain the approximate root. Finally, although Newton-Raphson's method has faster convergence than the others, the drawback of this method is the need to use the derivative of the studied function. Thus, in some cases, this method may be impracticable. In this work, the methods mentioned will be implemented in the Python programming language. In this work, the mentioned methods are implemented in the Python programming language, in order to strengthen programming knowledge in the formation of Engineers, as well as to emphasize the importance of applying numerical methods in practical problems of various engineering areas. |
| id |
UFSM-23_5905f5a6e2b58cab3e9f17eb46f3a370 |
|---|---|
| oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/40478 |
| network_acronym_str |
UFSM-23 |
| network_name_str |
Revista Ciência e Natura (Online) |
| repository_id_str |
|
| spelling |
Obtaining zeros of functions using PythonObtenção de zeros de funções utilizando PythonBissecçãoPosição FalsaNewton-RaphsonHNumerical Methods are very important in Engineering because many real problems have complicated mathematical models that are difficult to be solved analytically. Thus, the methods of resolution for several problems that are studied in the discipline of Computational Numerical Methods, as well as in the discipline of Algorithms, are indispensable for the formation of a future Engineer. Among the several numerical methods that exist, the following are the methods for obtaining zeros of functions: Bisection, False Position and Newton-Raphson. The Bisection method consists of defining the range containing a root and, using the arithmetic mean, dividing it until the desired precision is reached. In the case of the False Position method, the weighted arithmetic mean is used to obtain the approximate root. Finally, although Newton-Raphson's method has faster convergence than the others, the drawback of this method is the need to use the derivative of the studied function. Thus, in some cases, this method may be impracticable. In this work, the methods mentioned will be implemented in the Python programming language. In this work, the mentioned methods are implemented in the Python programming language, in order to strengthen programming knowledge in the formation of Engineers, as well as to emphasize the importance of applying numerical methods in practical problems of various engineering areas.Os métodos numéricos mostram-se de grande importância para a Engenharia, pois muitos problemas reais possuem modelagens matemáticas complicadas de serem resolvidas de forma analítica. Sendo assim, os métodos de resolução para diversos problemas vistos na disciplina de Métodos Numéricos Computacionais, bem como na disciplina de Algoritmos, são indispensáveis para a formação de um futuro Engenheiro. Dentre os diversos métodos numéricos existentes, destacam-se os métodos para obtenção de zeros de funções: Bissecção, Posição Falsa e Newton-Raphson. O método da Bissecção consiste em definir um intervalo que contém uma raiz e, utilizando a média aritmética, dividi-lo até que a precisão desejada seja alcançada. No caso do método da Posição Falsa, a média aritmética ponderada é utilizada para a obtenção da raiz aproximada. Por fim, apesar do método de Newton-Raphson ter convergência mais rápida que os demais, o inconveniente deste é a necessidade da utilização da derivada da função estudada. Com isso, em certos casos, a utilização deste método pode ser inviável. Neste trabalho, os métodos citados são implementados na linguagem de programação Python, com o intuito de fortalecer conhecimentos de programação na formação de engenheiros, bem como enfatizar a importância da aplicação de métodos numéricos em problemas práticos das diversas áreas das engenharias.Universidade Federal de Santa Maria2020-02-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttps://periodicos.ufsm.br/cienciaenatura/article/view/4047810.5902/2179460X40478Ciência e Natura; Vol. 42 (2020): SPECIAL EDITION: III PROJECT REPORTS UFSM – CAMPUS CACHOEIRA DO SUL; e10Ciência e Natura; v. 42 (2020): CIÊNCIA E NATURA: EDIÇÃO ESPECIAL: III MOSTRA DE PROJETOS DA UFSM – CAMPUS CACHOEIRA DO SUL; e102179-460X0100-8307reponame:Revista Ciência e Natura (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaenatura/article/view/40478/htmlCopyright (c) 2019 Ciência e Naturainfo:eu-repo/semantics/openAccessPereira, David LucasSoubhia, Ana LuisaLoreto, Aline Brum2022-03-23T20:29:25Zoai:ojs.pkp.sfu.ca:article/40478Revistahttps://periodicos.ufsm.br/cienciaenatura/indexPUBhttps://periodicos.ufsm.br/cienciaenatura/oaicienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br2179-460X0100-8307opendoar:2022-03-23T20:29:25Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)false |
| dc.title.none.fl_str_mv |
Obtaining zeros of functions using Python Obtenção de zeros de funções utilizando Python |
| title |
Obtaining zeros of functions using Python |
| spellingShingle |
Obtaining zeros of functions using Python Pereira, David Lucas Bissecção Posição Falsa Newton-Raphson |
| title_short |
Obtaining zeros of functions using Python |
| title_full |
Obtaining zeros of functions using Python |
| title_fullStr |
Obtaining zeros of functions using Python |
| title_full_unstemmed |
Obtaining zeros of functions using Python |
| title_sort |
Obtaining zeros of functions using Python |
| author |
Pereira, David Lucas |
| author_facet |
Pereira, David Lucas Soubhia, Ana Luisa Loreto, Aline Brum |
| author_role |
author |
| author2 |
Soubhia, Ana Luisa Loreto, Aline Brum |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Pereira, David Lucas Soubhia, Ana Luisa Loreto, Aline Brum |
| dc.subject.por.fl_str_mv |
Bissecção Posição Falsa Newton-Raphson |
| topic |
Bissecção Posição Falsa Newton-Raphson |
| description |
HNumerical Methods are very important in Engineering because many real problems have complicated mathematical models that are difficult to be solved analytically. Thus, the methods of resolution for several problems that are studied in the discipline of Computational Numerical Methods, as well as in the discipline of Algorithms, are indispensable for the formation of a future Engineer. Among the several numerical methods that exist, the following are the methods for obtaining zeros of functions: Bisection, False Position and Newton-Raphson. The Bisection method consists of defining the range containing a root and, using the arithmetic mean, dividing it until the desired precision is reached. In the case of the False Position method, the weighted arithmetic mean is used to obtain the approximate root. Finally, although Newton-Raphson's method has faster convergence than the others, the drawback of this method is the need to use the derivative of the studied function. Thus, in some cases, this method may be impracticable. In this work, the methods mentioned will be implemented in the Python programming language. In this work, the mentioned methods are implemented in the Python programming language, in order to strengthen programming knowledge in the formation of Engineers, as well as to emphasize the importance of applying numerical methods in practical problems of various engineering areas. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-02-07 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaenatura/article/view/40478 10.5902/2179460X40478 |
| url |
https://periodicos.ufsm.br/cienciaenatura/article/view/40478 |
| identifier_str_mv |
10.5902/2179460X40478 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaenatura/article/view/40478/html |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Ciência e Natura info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2019 Ciência e Natura |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
| publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
| dc.source.none.fl_str_mv |
Ciência e Natura; Vol. 42 (2020): SPECIAL EDITION: III PROJECT REPORTS UFSM – CAMPUS CACHOEIRA DO SUL; e10 Ciência e Natura; v. 42 (2020): CIÊNCIA E NATURA: EDIÇÃO ESPECIAL: III MOSTRA DE PROJETOS DA UFSM – CAMPUS CACHOEIRA DO SUL; e10 2179-460X 0100-8307 reponame:Revista Ciência e Natura (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
| instname_str |
Universidade Federal de Santa Maria (UFSM) |
| instacron_str |
UFSM |
| institution |
UFSM |
| reponame_str |
Revista Ciência e Natura (Online) |
| collection |
Revista Ciência e Natura (Online) |
| repository.name.fl_str_mv |
Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM) |
| repository.mail.fl_str_mv |
cienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br |
| _version_ |
1839277885292019712 |