Obtaining zeros of functions using Python

Detalhes bibliográficos
Autor(a) principal: Pereira, David Lucas
Data de Publicação: 2020
Outros Autores: Soubhia, Ana Luisa, Loreto, Aline Brum
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Ciência e Natura (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaenatura/article/view/40478
Resumo: HNumerical Methods are very important in Engineering because many real problems have complicated mathematical models that are difficult to be solved analytically. Thus, the methods of resolution for several problems that are studied in the discipline of Computational Numerical Methods, as well as in the discipline of Algorithms, are indispensable for the formation of a future Engineer. Among the several numerical methods that exist, the following are the methods for obtaining zeros of functions: Bisection, False Position and Newton-Raphson. The Bisection method consists of defining the range containing a root and, using the arithmetic mean, dividing it until the desired precision is reached. In the case of the False Position method, the weighted arithmetic mean is used to obtain the approximate root. Finally, although Newton-Raphson's method has faster convergence than the others, the drawback of this method is the need to use the derivative of the studied function. Thus, in some cases, this method may be impracticable. In this work, the methods mentioned will be implemented in the Python programming language. In this work, the mentioned methods are implemented in the Python programming language, in order to strengthen programming knowledge in the formation of Engineers, as well as to emphasize the importance of applying numerical methods in practical problems of various engineering areas.
id UFSM-23_5905f5a6e2b58cab3e9f17eb46f3a370
oai_identifier_str oai:ojs.pkp.sfu.ca:article/40478
network_acronym_str UFSM-23
network_name_str Revista Ciência e Natura (Online)
repository_id_str
spelling Obtaining zeros of functions using PythonObtenção de zeros de funções utilizando PythonBissecçãoPosição FalsaNewton-RaphsonHNumerical Methods are very important in Engineering because many real problems have complicated mathematical models that are difficult to be solved analytically. Thus, the methods of resolution for several problems that are studied in the discipline of Computational Numerical Methods, as well as in the discipline of Algorithms, are indispensable for the formation of a future Engineer. Among the several numerical methods that exist, the following are the methods for obtaining zeros of functions: Bisection, False Position and Newton-Raphson. The Bisection method consists of defining the range containing a root and, using the arithmetic mean, dividing it until the desired precision is reached. In the case of the False Position method, the weighted arithmetic mean is used to obtain the approximate root. Finally, although Newton-Raphson's method has faster convergence than the others, the drawback of this method is the need to use the derivative of the studied function. Thus, in some cases, this method may be impracticable. In this work, the methods mentioned will be implemented in the Python programming language. In this work, the mentioned methods are implemented in the Python programming language, in order to strengthen programming knowledge in the formation of Engineers, as well as to emphasize the importance of applying numerical methods in practical problems of various engineering areas.Os métodos numéricos mostram-se de grande importância para a Engenharia, pois muitos problemas reais possuem modelagens matemáticas complicadas de serem resolvidas de forma analítica. Sendo assim, os métodos de resolução para diversos problemas vistos na disciplina de Métodos Numéricos Computacionais, bem como na disciplina de Algoritmos, são indispensáveis para a formação de um futuro Engenheiro. Dentre os diversos métodos numéricos existentes, destacam-se os métodos para obtenção de zeros de funções: Bissecção, Posição Falsa e Newton-Raphson. O método da Bissecção consiste em definir um intervalo que contém uma raiz e, utilizando a média aritmética, dividi-lo até que a precisão desejada seja alcançada. No caso do método da Posição Falsa, a média aritmética ponderada é utilizada para a obtenção da raiz aproximada. Por fim, apesar do método de Newton-Raphson ter convergência mais rápida que os demais, o inconveniente deste é a necessidade da utilização da derivada da função estudada. Com isso, em certos casos, a utilização deste método pode ser inviável. Neste trabalho, os métodos citados são implementados na linguagem de programação Python, com o intuito de fortalecer conhecimentos de programação na formação de engenheiros, bem como enfatizar a importância da aplicação de métodos numéricos em problemas práticos das diversas áreas das engenharias.Universidade Federal de Santa Maria2020-02-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttps://periodicos.ufsm.br/cienciaenatura/article/view/4047810.5902/2179460X40478Ciência e Natura; Vol. 42 (2020): SPECIAL EDITION: III PROJECT REPORTS UFSM – CAMPUS CACHOEIRA DO SUL; e10Ciência e Natura; v. 42 (2020): CIÊNCIA E NATURA: EDIÇÃO ESPECIAL: III MOSTRA DE PROJETOS DA UFSM – CAMPUS CACHOEIRA DO SUL; e102179-460X0100-8307reponame:Revista Ciência e Natura (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaenatura/article/view/40478/htmlCopyright (c) 2019 Ciência e Naturainfo:eu-repo/semantics/openAccessPereira, David LucasSoubhia, Ana LuisaLoreto, Aline Brum2022-03-23T20:29:25Zoai:ojs.pkp.sfu.ca:article/40478Revistahttps://periodicos.ufsm.br/cienciaenatura/indexPUBhttps://periodicos.ufsm.br/cienciaenatura/oaicienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br2179-460X0100-8307opendoar:2022-03-23T20:29:25Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Obtaining zeros of functions using Python
Obtenção de zeros de funções utilizando Python
title Obtaining zeros of functions using Python
spellingShingle Obtaining zeros of functions using Python
Pereira, David Lucas
Bissecção
Posição Falsa
Newton-Raphson
title_short Obtaining zeros of functions using Python
title_full Obtaining zeros of functions using Python
title_fullStr Obtaining zeros of functions using Python
title_full_unstemmed Obtaining zeros of functions using Python
title_sort Obtaining zeros of functions using Python
author Pereira, David Lucas
author_facet Pereira, David Lucas
Soubhia, Ana Luisa
Loreto, Aline Brum
author_role author
author2 Soubhia, Ana Luisa
Loreto, Aline Brum
author2_role author
author
dc.contributor.author.fl_str_mv Pereira, David Lucas
Soubhia, Ana Luisa
Loreto, Aline Brum
dc.subject.por.fl_str_mv Bissecção
Posição Falsa
Newton-Raphson
topic Bissecção
Posição Falsa
Newton-Raphson
description HNumerical Methods are very important in Engineering because many real problems have complicated mathematical models that are difficult to be solved analytically. Thus, the methods of resolution for several problems that are studied in the discipline of Computational Numerical Methods, as well as in the discipline of Algorithms, are indispensable for the formation of a future Engineer. Among the several numerical methods that exist, the following are the methods for obtaining zeros of functions: Bisection, False Position and Newton-Raphson. The Bisection method consists of defining the range containing a root and, using the arithmetic mean, dividing it until the desired precision is reached. In the case of the False Position method, the weighted arithmetic mean is used to obtain the approximate root. Finally, although Newton-Raphson's method has faster convergence than the others, the drawback of this method is the need to use the derivative of the studied function. Thus, in some cases, this method may be impracticable. In this work, the methods mentioned will be implemented in the Python programming language. In this work, the mentioned methods are implemented in the Python programming language, in order to strengthen programming knowledge in the formation of Engineers, as well as to emphasize the importance of applying numerical methods in practical problems of various engineering areas.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-07
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaenatura/article/view/40478
10.5902/2179460X40478
url https://periodicos.ufsm.br/cienciaenatura/article/view/40478
identifier_str_mv 10.5902/2179460X40478
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaenatura/article/view/40478/html
dc.rights.driver.fl_str_mv Copyright (c) 2019 Ciência e Natura
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Ciência e Natura
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência e Natura; Vol. 42 (2020): SPECIAL EDITION: III PROJECT REPORTS UFSM – CAMPUS CACHOEIRA DO SUL; e10
Ciência e Natura; v. 42 (2020): CIÊNCIA E NATURA: EDIÇÃO ESPECIAL: III MOSTRA DE PROJETOS DA UFSM – CAMPUS CACHOEIRA DO SUL; e10
2179-460X
0100-8307
reponame:Revista Ciência e Natura (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Revista Ciência e Natura (Online)
collection Revista Ciência e Natura (Online)
repository.name.fl_str_mv Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv cienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br
_version_ 1839277885292019712