ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Revista Sergipana de Matemática e Educação Matemática |
Download full: | https://periodicos.ufs.br/ReviSe/article/view/21793 |
Summary: | In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more. |
id |
UFS-6_196f5a2b49d9c63a71dc6ac1654476ba |
---|---|
oai_identifier_str |
oai:ojs.ufs.emnuvens.com.br:article/21793 |
network_acronym_str |
UFS-6 |
network_name_str |
Revista Sergipana de Matemática e Educação Matemática |
repository_id_str |
|
spelling |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALSARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALSIn the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more.In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more.In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more.In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more.Universidade Federal de Sergipe2024-10-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufs.br/ReviSe/article/view/2179310.34179/revisem.v9i3.21793Revista Sergipana de Matemática e Educação Matemática; v. 9 n. 3 (2024): Revista Sergipana de Matemática e Educação Matemática; 25-34Revista Sergipana de Matemática e Educação Matemática; Vol. 9 No. 3 (2024): Revista Sergipana de Matemática e Educação Matemática; 25-34Revista Sergipana de Matemática e Educação Matemática; Vol. 9 Núm. 3 (2024): Revista Sergipana de Matemática e Educação Matemática; 25-34Revista Sergipana de Matemática e Educação Matemática; Vol. 9 No 3 (2024): Revista Sergipana de Matemática e Educação Matemática; 25-342525-5444reponame:Revista Sergipana de Matemática e Educação Matemáticainstname:Universidade Federal de Sergipe (UFS)instacron:UFSenghttps://periodicos.ufs.br/ReviSe/article/view/21793/16321Copyright (c) 2024 Mateus Alegrihttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessAlegri, MateusBulnes, JuanKim, TaekyunBonilla, José Luís2024-10-14T15:18:13Zoai:ojs.ufs.emnuvens.com.br:article/21793Revistahttps://periodicos.ufs.br/ReviSePUBhttps://periodicos.ufs.br/ReviSe/oairevisem.ojs@gmail.com || arlucioviana@ufs.br2525-54442525-5444opendoar:2024-10-14T15:18:13Revista Sergipana de Matemática e Educação Matemática - Universidade Federal de Sergipe (UFS)false |
dc.title.none.fl_str_mv |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more. |
title |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS |
spellingShingle |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS Alegri, Mateus |
title_short |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS |
title_full |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS |
title_fullStr |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS |
title_full_unstemmed |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS |
title_sort |
ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS |
author |
Alegri, Mateus |
author_facet |
Alegri, Mateus Bulnes, Juan Kim, Taekyun Bonilla, José Luís |
author_role |
author |
author2 |
Bulnes, Juan Kim, Taekyun Bonilla, José Luís |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Alegri, Mateus Bulnes, Juan Kim, Taekyun Bonilla, José Luís |
description |
In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10-14 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufs.br/ReviSe/article/view/21793 10.34179/revisem.v9i3.21793 |
url |
https://periodicos.ufs.br/ReviSe/article/view/21793 |
identifier_str_mv |
10.34179/revisem.v9i3.21793 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufs.br/ReviSe/article/view/21793/16321 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2024 Mateus Alegri https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2024 Mateus Alegri https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Sergipe |
publisher.none.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
Revista Sergipana de Matemática e Educação Matemática; v. 9 n. 3 (2024): Revista Sergipana de Matemática e Educação Matemática; 25-34 Revista Sergipana de Matemática e Educação Matemática; Vol. 9 No. 3 (2024): Revista Sergipana de Matemática e Educação Matemática; 25-34 Revista Sergipana de Matemática e Educação Matemática; Vol. 9 Núm. 3 (2024): Revista Sergipana de Matemática e Educação Matemática; 25-34 Revista Sergipana de Matemática e Educação Matemática; Vol. 9 No 3 (2024): Revista Sergipana de Matemática e Educação Matemática; 25-34 2525-5444 reponame:Revista Sergipana de Matemática e Educação Matemática instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Revista Sergipana de Matemática e Educação Matemática |
collection |
Revista Sergipana de Matemática e Educação Matemática |
repository.name.fl_str_mv |
Revista Sergipana de Matemática e Educação Matemática - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
revisem.ojs@gmail.com || arlucioviana@ufs.br |
_version_ |
1831305191816691712 |