Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo
| Main Author: | |
|---|---|
| Publication Date: | 2025 |
| Format: | Doctoral thesis |
| Language: | por |
| Source: | Repositório Institucional da UFRRJ |
| Download full: | https://rima.ufrrj.br/jspui/handle/20.500.14407/22020 |
Summary: | Os transtornos de ansiedade estão entre as condições psiquiátricas de maior prevalência na população ocidental, levando à perda da qualidade de vida das pessoas acometidas. Isso reflete em prejuízos no convívio social, no desempenho escolar e no trabalho, além de promover grandes custos financeiros tanto para o paciente quanto para os sistemas de saúde. Diferentes mecanismos estão envolvidos no desenvolvimento de transtornos de ansiedade, dentre eles, alterações neuroendócrinas, como por exemplo, disfunções dos sistemas vasopressinérgico e ocitocinérgico. Além disso, disfunções nesses sistemas também podem causar déficits sociais, prejudicando a capacidade de integrar habilidades comportamentais, cognitivas e afetivas para se adaptar a diferentes contextos sociais. Ansiedade e déficits sociais são características comuns em transtornos neuropsiquiátricos, como depressão, transtornos bipolares e autismo. Eventos ocorridos no período perinatal têm grande impacto no comportamento do indivíduo desde a infância até a idade adulta. Fatores desfavoráveis nesta fase, têm sido correlacionados com a manifestação de doenças neuropsiquiátricas devido à sensibilidade neuroplástica desse período no desenvolvimento do sistema nervoso central. Por outro lado, ambientes favoráveis podem melhorar as capacidades cognitivas e emocionais. Neste trabalho, avaliamos os efeitos do enriquecimento ambiental (EA) perinatal no comportamento social e comportamento análogo à ansiedade em camundongos adolescentes e adultos, tanto machos quanto fêmeas. Também foi realizada uma análise por imunofluorescência dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo. Na adolescência, os grupos submetidos ao ambiente enriquecido perinatal (AEP) apresentaram um aumento de 144,9% no tempo de brincadeira social em comparação aos animais de ambiente padrão perinatal (APP) (fator ambiente: F1,28 = 12,23, p = 0,0016). O EA perinatal não foi capaz de promover redução dos comportamentos ansiosos no teste do labirinto em cruz elevado (LCE) e da caixa claro- escuro (CCE). Contudo, no LCE, o aumento da atividade locomotora em 23,6% foi observado nos animais AEP em comparação aos animais APP (fator ambiente: (F1,60 = 4.28, p = 0,04). Na análise dos neurônios vasopressinérgicos, não foram encontradas diferenças significativas nos animais adolescentes. Porém, na análise dos neurônios ocitocinérgicos, os animais EAP apresentavam área do soma 10,7% maior que os APP (fator ambiente: F1,17 = 4,95, p = 0,03), assim como um aumento de 7,5% no diâmetro (fator ambiente: F1,17 = 13,2, p = 0,002). Nos adultos, independente do sexo, não houve diferenças significativas nos comportamentos sociais no teste de sociabilidade e preferência pela novidade social. Contudo, os animais EAP apresentaram aumento da atividade exploratória neste teste, com aumento no número de rearing 88,1% maior que dos animais APP (fator ambiente: F1,57 = 5,10, p = 0,02). No teste do LCE, os animais enriquecidos demonstraram evidente redução dos comportamentos ansiosos, com aumento de 67,12% do tempo relativo de permanência nos braços abertos em relação aos |
| id |
UFRRJ-1_f2b85c58653d75c2e5d8ac9df983facf |
|---|---|
| oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/22020 |
| network_acronym_str |
UFRRJ-1 |
| network_name_str |
Repositório Institucional da UFRRJ |
| repository_id_str |
|
| spelling |
Muniz, Samantha Costa AmorimRocha, Fabio Fagundes dahttp://lattes.cnpq.br/3804957959723162Rocha, Fabio Fagundes dahttp://lattes.cnpq.br/3804957959723162Soares, Bruno Lobãohttps://orcid.org/0000-0003-4564-2288http://lattes.cnpq.br/3124118595692286Almeida, Claudio da Silvahttp://lattes.cnpq.br/0560189477795224Mecawi, Andre de Souzahttps://orcid.org/0000-0003-4517-6221http://lattes.cnpq.br/7081349017203771Oliveira, Norma Aparecida Almeida Figueiredo dehttp://lattes.cnpq.br/8601494649709728http://lattes.cnpq.br/97575260214213572025-05-30T10:40:06Z2025-05-30T10:40:06Z2025-02-25MUNIZ, Samantha Costa Amorim. Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo. 2025. 112 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.https://rima.ufrrj.br/jspui/handle/20.500.14407/22020Os transtornos de ansiedade estão entre as condições psiquiátricas de maior prevalência na população ocidental, levando à perda da qualidade de vida das pessoas acometidas. Isso reflete em prejuízos no convívio social, no desempenho escolar e no trabalho, além de promover grandes custos financeiros tanto para o paciente quanto para os sistemas de saúde. Diferentes mecanismos estão envolvidos no desenvolvimento de transtornos de ansiedade, dentre eles, alterações neuroendócrinas, como por exemplo, disfunções dos sistemas vasopressinérgico e ocitocinérgico. Além disso, disfunções nesses sistemas também podem causar déficits sociais, prejudicando a capacidade de integrar habilidades comportamentais, cognitivas e afetivas para se adaptar a diferentes contextos sociais. Ansiedade e déficits sociais são características comuns em transtornos neuropsiquiátricos, como depressão, transtornos bipolares e autismo. Eventos ocorridos no período perinatal têm grande impacto no comportamento do indivíduo desde a infância até a idade adulta. Fatores desfavoráveis nesta fase, têm sido correlacionados com a manifestação de doenças neuropsiquiátricas devido à sensibilidade neuroplástica desse período no desenvolvimento do sistema nervoso central. Por outro lado, ambientes favoráveis podem melhorar as capacidades cognitivas e emocionais. Neste trabalho, avaliamos os efeitos do enriquecimento ambiental (EA) perinatal no comportamento social e comportamento análogo à ansiedade em camundongos adolescentes e adultos, tanto machos quanto fêmeas. Também foi realizada uma análise por imunofluorescência dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo. Na adolescência, os grupos submetidos ao ambiente enriquecido perinatal (AEP) apresentaram um aumento de 144,9% no tempo de brincadeira social em comparação aos animais de ambiente padrão perinatal (APP) (fator ambiente: F1,28 = 12,23, p = 0,0016). O EA perinatal não foi capaz de promover redução dos comportamentos ansiosos no teste do labirinto em cruz elevado (LCE) e da caixa claro- escuro (CCE). Contudo, no LCE, o aumento da atividade locomotora em 23,6% foi observado nos animais AEP em comparação aos animais APP (fator ambiente: (F1,60 = 4.28, p = 0,04). Na análise dos neurônios vasopressinérgicos, não foram encontradas diferenças significativas nos animais adolescentes. Porém, na análise dos neurônios ocitocinérgicos, os animais EAP apresentavam área do soma 10,7% maior que os APP (fator ambiente: F1,17 = 4,95, p = 0,03), assim como um aumento de 7,5% no diâmetro (fator ambiente: F1,17 = 13,2, p = 0,002). Nos adultos, independente do sexo, não houve diferenças significativas nos comportamentos sociais no teste de sociabilidade e preferência pela novidade social. Contudo, os animais EAP apresentaram aumento da atividade exploratória neste teste, com aumento no número de rearing 88,1% maior que dos animais APP (fator ambiente: F1,57 = 5,10, p = 0,02). No teste do LCE, os animais enriquecidos demonstraram evidente redução dos comportamentos ansiosos, com aumento de 67,12% do tempo relativo de permanência nos braços abertos em relação aosCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESAnxiety disorders are among the most prevalent psychiatric conditions in Western populations, leading to a loss of quality of life for those affected. This results in impairments in social interactions, academic performance, and work productivity, as well as significant financial costs for both patients and healthcare systems. Various mechanisms are involved in the development of anxiety disorders, including neuroendocrine alterations, such as dysfunctions in the vasopressinergic and oxytocinergic systems. Furthermore, dysfunctions in these systems can also lead to social deficits, impairing the ability to integrate behavioral, cognitive, and emotional skills to adapt to different social contexts. Anxiety and social deficits are common features of neuropsychiatric disorders such as depression, bipolar disorders, and autism. Events occurring during the perinatal period have a significant impact on an individual's behavior from childhood through adulthood. Adverse factors during this phase have been correlated with the manifestation of neuropsychiatric disorders due to the neuroplastic sensitivity of this period in the development of the central nervous system. On the other hand, favorable environments can enhance cognitive and emotional capacities. In this study, we evaluated the effects of perinatal environmental enrichment (EE) on social behavior and anxiety-like behavior in adolescent and adult mice, both males and females. Additionally, we performed an immunofluorescence analysis of vasopressinergic and oxytocinergic neurons in the paraventricular nucleus of the hypothalamus. During adolescence, groups subjected to perinatal EE (PEE) exhibited a 144.9% increase in social play time compared to animals raised in standard perinatal environment (SPE) (environment factor: F1,28 = 12.23, p = 0.0016). Perinatal EE did not reduce anxiety-like behaviors in the elevated plus maze (EPM) or light/dark box (LDB) tests. However, in the EPM, a 23.6% increase in locomotor activity was observed in PEE animals compared to SPE animals (environment factor: F1,60 = 4.28, p = 0,04). In the analysis of vasopressinergic neurons, no significant differences were found in adolescent animals. However, in the analysis of oxytocinergic neurons, PEE animals exhibited a 10.7% larger soma area compared to SPE animals (environment factor: F1,17 = 4.95, p = 0.03), as well as a 7.5% increase in diameter (environment factor: F1,17 = 13.2, p = 0.002). In adulthood, regardless of sex, no significant differences were observed in social behaviors in the sociability and social novelty preference tests. However, PEE animals showed increased exploratory activity during the test, with an 88.1% higher rearing count compared to SPE animals (environment factor: F1,57 = 5.10, p = 0.02). In the EPM test, enriched animals demonstrated a clear reduction in anxiety-like behaviors, with a 67.12% increase in the relative time spent in open arms compared to SPE animals (environment factor: F1,58 = 5.17, p = 0.02). In this test, perinatal EE was also able to increase the relative number of open arm entries by 56.0% (F1,58 = 5.64, p = 0.02) and reduce the number of risk assessments by 27.4% (F1,58 = 18.94, p < 0.0001). However, there was an interaction between the factors for these two parameters, and these effects were observed only in males. In the LDB test, PEE adults animals displayed increased exploratory activity, evidenced by a 61.36% increase in the number of transitions between the light/dark compartments compared to SPE animals (environment factor: F1,58 = 9.19, p = 0.003), as well as a 33.2% reduction in latency to enter the light compartment for the first time (F1,58 = 7.56, p = 0.007). In the analysis of vasopressinergic neurons of adults animals, perinatal EE reduced soma area by 13.0% (environment factor: F1,16 = 5.95, p = 0.02) and diameter by 9.6% (environment factor: F1,16 = 6.41, p = 0.02) compared to SPE groups. However, there was an interaction between factors, and perinatal EE affected only males. Similarly, PEE animals exhibited a 7.3% reduction in the nuclear area of these neurons (environment factor: F1,16 = 5.95, p = 0.02) and a 4.6% reduction in diameter (F1,16 = 6.41, p = 0.02), with an interaction between factors, affecting only males (environment × sex interaction: F1,16 = 19.81, p = 0.0004). In the analysis of oxytocinergic neurons, PEE animals showed a 9.1% increase in oxytocin labeling intensity in the soma compared to SPE animals (environment factor: F1,16 = 5.42, p = 0.03). Additionally, perinatal EE promoted a 16.2% increase in the nuclear area of these neurons (environment factor: F1,16 = 12.09, p = 0.003) and a 7.1% increase in diameter (environment factor: F1,16 = 6.80, p = 0.01). Therefore, perinatal EE increases sociability in both male and female adolescents, possibly through alterations in the oxytocinergic system. It also reduces context-dependent anxiety-like behaviors in adults, with the potential involvement of vasopressinergic and oxytocinergic systems, exhibiting sex-dependent differences.porUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências FisiológicasUFRRJBrasilInstituto de Ciências Biológicas e Da SaúdeFisiologiacamundongocomportamentoneurodesenvolvimentomousebehaviorneurodevelopmentEfeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamoPerinatal environmental enrichment effects on anxiety-like behavior and sociability and the potential involvement of vasopressinergic and oxytocinergic neurons in the paraventricular nucleus of the hypothalamusinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisABBOTT, P. W. et al. Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology, v. 90, p. 9–21, 1 abr. 2018. ADHIKARI, A. Distributed circuits underlying anxiety. Frontiers in Behavioral Neuroscience, v. 8, n. APR, p. 82707, 1 abr. 2014. ALCÁNTARA-ALONSO, V. et al. Altered functionality of the corticotrophin-releasing hormone receptor-2 in the hypothalamic paraventricular nucleus of hyperphagic maternally separated rats. Neuropeptides, v. 63, p. 75–82, 1 jun. 2017. ALLEN, A. J.; LEONARD, H.; SWEDO, S. E. Current Knowledge of Medications for the Treatment of Childhood Anxiety Disorders. Journal of the American Academy of Child & Adolescent Psychiatry, v. 34, n. 8, p. 976–986, 1 ago. 1995. AYERS, L. W. et al. Oxytocin Reduces Background Anxiety in a Fear-Potentiated Startle Paradigm: Peripheral vs Central Administration. Neuropsychopharmacology 2011 36:12, v. 36, n. 12, p. 2488– 2497, 27 jul. 2011. BAHI, A.; DREYER, J. L. Dopamine transporter (DAT) knockdown in the nucleus accumbens improves anxiety- and depression-related behaviors in adult mice. Behavioural Brain Research, v. 359, p. 104– 115, 1 fev. 2019. BARACZ, S. J.; EVERETT, N. A.; CORNISH, J. L. The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: Applicability of oxytocin as a pharmacotherapy. Neuroscience & Biobehavioral Reviews, v. 110, p. 114–132, 1 mar. 2020. BARIBEAU, D. A.; ANAGNOSTOU, E. Oxytocin and vasopressin: Linking pituitary neuropeptides and their receptors to social neurocircuits. Frontiers in Neuroscience, v. 9, n. SEP, p. 160850, 24 set. 2015. BAYERL, D. S.; HÖNIG, J. N.; BOSCH, O. J. Vasopressin V1a, but not V1b, receptors within the PVN of lactating rats mediate maternal care and anxiety-related behaviour. Behavioural Brain Research, v. 305, p. 18–22, 15 maio 2016. BEERY, A. K.; KAUFER, D. Stress, social behavior, and resilience: Insights from rodents. Neurobiology of Stress, v. 1, n. 1, p. 116–127, 1 jan. 2015. 98 BELL, M. R. Comparing Postnatal Development of Gonadal Hormones and Associated Social Behaviors in Rats, Mice, and Humans. Endocrinology, v. 159, n. 7, p. 2596–2613, 1 jul. 2018. BIELSKY, I. F. et al. The V1a Vasopressin Receptor Is Necessary and Sufficient for Normal Social Recognition: A Gene Replacement Study. Neuron, v. 47, n. 4, p. 503–513, 18 ago. 2005. BLACK, M. M. et al. Early childhood development coming of age: science through the life course. The Lancet, v. 389, n. 10064, p. 77–90, 7 jan. 2017. BOCK, J. et al. Stress In Utero: Prenatal Programming of Brain Plasticity and Cognition. Biological Psychiatry, v. 78, n. 5, p. 315–326, 1 set. 2015. BORLAND, J. M. et al. Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology, v. 95, p. 128–137, 1 set. 2018. BORROW, A. P. et al. Chronic Variable Stress Induces Sex-Specific Alterations in Social Behavior and Neuropeptide Expression in the Mouse. Endocrinology, v. 159, n. 7, p. 2803–2814, 1 jul. 2018. BORROW, A. P. et al. Chronic variable stress alters hypothalamic-pituitary-adrenal axis function in the female mouse. Physiology & Behavior, v. 209, p. 112613, 1 out. 2019. BOURIN, M.; HASCOËT, M. The mouse light/dark box test. European Journal of Pharmacology, v. 463, n. 1–3, p. 55–65, 28 fev. 2003. BREACH, M. R. et al. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Hormones and Behavior, v. 157, p. 105427, 1 jan. 2024. BREDEWOLD, R. et al. Involvement of dopamine, but not norepinephrine, in the sex-specific regulation of juvenile socially rewarding behavior by vasopressin. Neuropsychopharmacology 2018 43:10, v. 43, n. 10, p. 2109–2117, 22 maio 2018. BRUST, V.; SCHINDLER, P. M.; LEWEJOHANN, L. Lifetime development of behavioural phenotype in the house mouse (Mus musculus). Frontiers in Zoology, v. 12, n. 1, p. 1–14, 24 ago. 2015. 99 BURFORD, N. G.; WEBSTER, N. A.; CRUZ-TOPETE, D. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System. International Journal of Molecular Sciences 2017, Vol. 18, Page 2150, v. 18, n. 10, p. 2150, 16 out. 2017. CALDWELL, H. K. Oxytocin and sex differences in behavior. Current Opinion in Behavioral Sciences, v. 23, p. 13–20, 1 out. 2018. CANCEDDA, L. et al. Acceleration of Visual System Development by Environmental Enrichment. Journal of Neuroscience, v. 24, n. 20, p. 4840–4848, 19 maio 2004. CÁRDENAS, L. et al. Enriched environment restricted to gestation accelerates the development of sensory and motor circuits in the rat pup. International Journal of Developmental Neuroscience, v. 41, p. 68–73, 1 abr. 2015. CARTER, C. S. The oxytocin-vasopressin pathway in the context of love and fear. Frontiers in Endocrinology, v. 8, n. DEC, p. 322440, 22 dez. 2017. CHAOULOFF, F.; DURAND, M.; MORM~DE, P. Anxiety-and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light testsBehavioural Brain Research. [s.l: s.n.]. CHAOULOFF, F.; DURAND, M.; MORMÈDE, P. Anxiety- and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light tests. Behavioural Brain Research, v. 85, n. 1, p. 27–35, 1 abr. 1997. CHAPILLON, P. et al. Rearing environmental enrichment in two inbred strains of mice: 1. Effects on emotional reactivity. Behavior Genetics, v. 29, n. 1, p. 41–46, 1999. CHEN, P.; HONG, W. Neural Circuit Mechanisms of Social Behavior. Neuron, v. 98, n. 1, p. 16–30, 4 abr. 2018. CHEN, S. et al. Morpho-Electric Properties and Diversity of Oxytocin Neurons in Paraventricular Nucleus of Hypothalamus in Female and Male Mice. Journal of Neuroscience, v. 42, n. 14, p. 2885– 2904, 6 abr. 2022. 100 CHEN, X. et al. Human pharmacology of positive GABA-A subtype-selective receptor modulators for the treatment of anxiety. Acta pharmacologica Sinica, v. 40, n. 5, p. 571–582, 1 maio 2019. CONNORS, E. J. et al. Environmental enrichment models a naturalistic form of maternal separation and shapes the anxiety response patterns of offspring. Psychoneuroendocrinology, v. 52, n. 1, p. 153–167, 1 fev. 2015. CORREDOR, K. et al. Behavioral effects of environmental enrichment on male and female wistar rats with early life stress experiences. Frontiers in Physiology, v. 13, p. 837661, 26 set. 2022. COSTALL, B. et al. Exploration of mice in a black and white test box: Validation as a model of anxiety. Pharmacology Biochemistry and Behavior, v. 32, n. 3, p. 777–785, 1 mar. 1989. CRAWLEY, J.; GOODWIN, F. K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior, v. 13, n. 2, p. 167–170, 1 ago. 1980. CRAWLEY, J. N. Designing mouse behavioral tasks relevant to autistic-like behaviors. Mental retardation and developmental disabilities research reviews, v. 10, n. 4, p. 248–258, 2004. CURLEY, J. P. et al. Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behavior in mice. Frontiers in Behavioral Neuroscience, v. 3, n. SEP, p. 816, 15 set. 2009. CYMERBLIT-SABBA, A. et al. Prenatal Enriched Environment improves emotional and attentional reactivity to adulthood stress. Behavioural Brain Research, v. 241, n. 1, p. 185–190, 15 mar. 2013. DANDI, Ε. et al. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental Neuroscience, v. 67, p. 19–32, 1 jun. 2018. DE KOCK, C. P. J. et al. Somatodendritic Secretion in Oxytocin Neurons Is Upregulated during the Female Reproductive Cycle. Journal of Neuroscience, v. 23, n. 7, p. 2726–2734, 1 abr. 2003. 101 DE SOUZA, M. A. et al. Prenatal stress produces social behavior deficits and alters the number of oxytocin and vasopressin neurons in adult rats. Neurochemical Research, v. 38, n. 7, p. 1479–1489, 30 jul. 2013. DÖLEN, G. et al. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013 501:7466, v. 501, n. 7466, p. 179–184, 11 set. 2013. DOUGLAS, A. J. Vasopressin and oxytocin. Techniques in the Behavioral and Neural Sciences, v. 15, n. PART 1, p. 205–229, 1 jan. 2005. DUMAIS, K. M.; VEENEMA, A. H. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Frontiers in Neuroendocrinology, v. 40, p. 1–23, 1 jan. 2016. DUQUE-WILCKENS, N. et al. Inhibition of vasopressin V1a receptors in the medioventral bed nucleus of the stria terminalis has sex- and context-specific anxiogenic effects. Neuropharmacology, v. 110, p. 59–68, 1 nov. 2016. DURÁN-CARABALI, L. E. et al. Prenatal and Early Postnatal Environmental Enrichment Reduce Acute Cell Death and Prevent Neurodevelopment and Memory Impairments in Rats Submitted to Neonatal Hypoxia Ischemia. Molecular Neurobiology, v. 55, n. 5, p. 3627–3641, 1 maio 2018. FERRAGUTI, F. Metabotropic glutamate receptors as targets for novel anxiolytics. Current Opinion in Pharmacology, v. 38, p. 37–42, 1 fev. 2018. FISCH, J. et al. Effects of environmental enrichment on reproductive performance and quantity and morphology of cumulus-oocyte complexes obtained from Rattus norvegicus. Theriogenology, v. 94, p. 114–119, 1 maio 2017. FREDA, S. N. et al. Brainwide input-output architecture of paraventricular oxytocin and vasopressin neurons. bioRxiv, p. 2022.01.17.476652, 18 jan. 2022. FROEMKE, R. C.; YOUNG, L. J. Oxytocin, Neural Plasticity, and Social Behavior. Annual Review of Neuroscience, v. 44, n. Volume 44, 2021, p. 359–381, 8 jul. 2021. 102 GOLDSTEIN, E. Z. et al. Prolonged Environmental Enrichment Promotes Developmental Myelination. Frontiers in Cell and Developmental Biology, v. 9, p. 665409, 26 abr. 2021. GRINEVICH, V.; LUDWIG, M. The multiple faces of the oxytocin and vasopressin systems in the brain. Journal of neuroendocrinology, v. 33, n. 11, 1 nov. 2021. GUBERT, C.; HANNAN, A. J. Environmental enrichment as an experience-dependent modulator of social plasticity and cognition. Brain Research, v. 1717, p. 1–14, 15 ago. 2019. GUNAYDIN, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell, v. 157, n. 7, p. 1535–1551, 19 jun. 2014. HAMMOCK, E. A. D. Developmental Perspectives on Oxytocin and Vasopressin. Neuropsychopharmacology, v. 40, n. 1, p. 24, 1 jan. 2015. HAN, R. T. et al. Long-Term Isolation Elicits Depression and Anxiety-Related Behaviors by Reducing Oxytocin-Induced GABAergic Transmission in Central Amygdala. Frontiers in Molecular Neuroscience, v. 11, p. 398858, 14 ago. 2018. HAN, Y. et al. The role of enriched environment in neural development and repair. Frontiers in Cellular Neuroscience, v. 16, p. 890666, 21 jul. 2022. HERNÁNDEZ, V. S. et al. Extra-neurohypophyseal axonal projections from individual vasopressin- containing magnocellular neurons in rat hypothalamus. Frontiers in Neuroanatomy, v. 9, n. OCT, p. 151582, 6 out. 2015. HERNÁNDEZ, V. S. et al. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: Implications for anxiety and stress coping. Frontiers in Neural Circuits, v. 10, n. NOV, p. 230703, 18 nov. 2016. HUNG, L. W. et al. Gating of social reward by oxytocin in the ventral tegmental area. Science, v. 357, n. 6358, p. 1406–1411, 29 set. 2017. JAKUBOVSKI, E. et al. Systematic review and meta-analysis: Dose–response curve of SSRIs and SNRIs in anxiety disorders. Depression and Anxiety, v. 36, n. 3, p. 198–212, 1 mar. 2019. 103 JANAK, P. H.; TYE, K. M. From circuits to behaviour in the amygdala. Nature 2015 517:7534, v. 517, n. 7534, p. 284–292, 14 jan. 2015. JI, N. N.; JIANG, H.; XIA, M. The influence of the enriched environment in different periods on neonatal maternal separation-induced visceral pain, anxiousness, and depressive behaviors. Translational Pediatrics, v. 11, n. 9, p. 1562–1569, 1 set. 2022. JIN, Y. et al. The Role of Oxytocin in Early-Life-Stress-Related Neuropsychiatric Disorders. International Journal of Molecular Sciences 2023, Vol. 24, Page 10430, v. 24, n. 13, p. 10430, 21 jun. 2023. JOBIM, C. M. N.; 073.525.166-54; HTTP://LATTES.CNPQ.BR/4464338559548820. Efeito do enriquecimento ambiental perinatal de fêmeas em comportamentos relacionados a ansiedade na sua prole. 25 maio 2016. JUREK, B.; NEUMANN, I. D. The oxytocin receptor: From intracellular signaling to behavior. Physiological Reviews, v. 98, n. 3, p. 1805–1908, 1 jul. 2018. KAIDANOVICH-BEILIN, O. et al. Assessment of Social Interaction Behaviors. Journal of Visualized Experiments : JoVE, n. 48, p. 2473, 2011. KHOSRAVI, H.; KHALILZADEH, E.; VAFAEI SAIAH, G. Pain-induced aggression and changes in social behavior in mice. Aggressive Behavior, v. 47, n. 1, p. 89–98, 1 jan. 2021. KIM, D. G. et al. Social Interaction Test in Home Cage as a Novel and Ethological Measure of Social Behavior in Mice. Experimental Neurobiology, v. 28, n. 2, p. 247, 1 abr. 2019. KNOBLOCH, H. S. et al. Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response. Neuron, v. 73, n. 3, p. 553–566, 9 fev. 2012. KOROSI, A.; BARAM, T. Z. The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, v. 583, n. 2–3, p. 204–214, 7 abr. 2008. KUNDAKOVIC, M.; JARIC, I. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes 2017, Vol. 8, Page 104, v. 8, n. 3, p. 104, 18 mar. 2017. 104 LI, K. et al. A Cortical Circuit for Sexually Dimorphic Oxytocin-Dependent Anxiety Behaviors. Cell, v. 167, n. 1, p. 60- 72.e11, 22 set. 2016. LI, K. A.; LUND, E. T.; VOIGT, J. P. W. The impact of early postnatal environmental enrichment on maternal care and offspring behaviour following weaning. Behavioural Processes, v. 122, p. 51–58, 1 jan. 2016. LISTER, R. G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology, v. 92, n. 2, p. 180–185, jun. 1987. LIU, H. et al. Neonatal exposure to sevoflurane impairs preference for social novelty in C57BL/6 female mice at early-adulthood. Biochemical and Biophysical Research Communications, v. 593, p. 129–136, 19 fev. 2022. LIVIA TERRANOVA, M.; LAVIOLA, G. Individual differences in mouse behavioural development: effects of precocious weaning and ongomg sexual segregation. Animal Behaviour, v. 50, n. 5, p. 1261–1271, 1 jan. 1995a. LIVIA TERRANOVA, M.; LAVIOLA, G. Individual differences in mouse behavioural development: effects of precocious weaning and ongomg sexual segregation. Animal Behaviour, v. 50, n. 5, p. 1261–1271, 1 jan. 1995b. LUBY, J. L.; ROGERS, C.; MCLAUGHLIN, K. A. Environmental Conditions to Promote Healthy Childhood Brain/Behavioral Development: Informing Early Preventive Interventions for Delivery in Routine Care. Biological Psychiatry Global Open Science, v. 2, n. 3, p. 233–241, 1 jul. 2022. LUCASSEN, P. J. et al. Activation of Vasopressin Neurons in Aging and Alzheimer’s Disease. Journal of Neuroendocrinology, v. 6, n. 6, p. 673–679, 1 dez. 1994. LUKAS, M. et al. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: Male juvenile versus female adult conspecifics. Psychoneuroendocrinology, v. 38, n. 6, p. 916–926, 1 jun. 2013. MADRIGAL, M. DEL P.; JURADO, S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Communications Biology 2021 4:1, v. 4, n. 1, p. 1–16, 14 maio 2021. 105 MAIKOO, S.; WILKINS, A.; QULU, L. The effect of oxytocin and an enriched environment on anxiety- like behaviour and corticosterone levels in a prenatally stressed febrile seizure rat model. IBRO Neuroscience Reports, v. 13, p. 47–56, 1 dez. 2022. MAO, Y. et al. Concurrent environmental enrichment and chronic restraint stress: Effects on innate anxiety and depressive-like behavior in male adolescent mice. International Journal of Developmental Neuroscience, v. 80, n. 8, p. 730–736, 1 dez. 2020. MARTIN, E. I. et al. The Neurobiology of Anxiety Disorders: Brain Imaging, Genetics, and Psychoneuroendocrinology. Clinics in Laboratory Medicine, v. 30, n. 4, p. 865–891, 1 dez. 2010. MARTINEZ, A. R.; BRUNELLI, S. A.; ZIMMERBERG, B. Communal nesting exerts epigenetic influences on affective and social behaviors in rats selectively bred for an infantile trait. Physiology & Behavior, v. 139, p. 97–103, 1 fev. 2015. MEYER-LINDENBERG, A. et al. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nature Reviews Neuroscience 2011 12:9, v. 12, n. 9, p. 524–538, 19 ago. 2011. MILBOCKER, K. A. et al. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Frontiers in Behavioral Neuroscience, v. 15, p. 786234, 2 dez. 2021. MINHAS, S. et al. Stress-induced oxytocin release and oxytocin cell number and size in prepubertal and adult male and female rats. General and Comparative Endocrinology, v. 234, p. 103–109, 1 ago. 2016. MOREIRA, V. B. et al. Parental behavior and anxiety in isogenic and outbred mice given access to two types of nesting materials. Applied Animal Behaviour Science, v. 215, p. 68–76, 1 jun. 2019. MOY, S. S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes, brain, and behavior, v. 3, n. 5, p. 287–302, out. 2004. MURGATROYD, C. et al. Impaired Repression at a Vasopressin Promoter Polymorphism Underlies Overexpression of Vasopressin in a Rat Model of Trait Anxiety. Journal of Neuroscience, v. 24, n. 35, p. 7762–7770, 1 set. 2004. 106 NEAL, S. et al. Enriched environment exposure enhances social interactions and oxytocin responsiveness in male long-evans rats. Frontiers in Behavioral Neuroscience, v. 12, p. 395307, 5 set. 2018. NEWMAN, S. W. The Medial Extended Amygdala in Male Reproductive Behavior A Node in the Mammalian Social Behavior Network. Annals of the New York Academy of Sciences, v. 877, n. 1, p. 242–257, 1 jun. 1999. NITHIANANTHARAJAH, J.; HANNAN, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews Neuroscience 2006 7:9, v. 7, n. 9, p. 697–709, set. 2006. NYGAARD, K. R.; MALONEY, S. E.; DOUGHERTY, J. D. Erroneous inference based on a lack of preference within one group: Autism, mice, and the social approach task. Autism Research, v. 12, n. 8, p. 1171–1183, 1 ago. 2019. ONAKA, T.; TAKAYANAGI, Y. The oxytocin system and early-life experience-dependent plastic changes. Journal of Neuroendocrinology, v. 33, n. 11, 1 nov. 2021. OPAS – ORGANIZAÇÃO PAN-AMERICANA DE SAÚDE. Relatório sobre a saúde no mundo: transtornos mentais em crescimento. OPAS – Organização Pan-Americana de SaúdeWashington, D.C., 2018. ORELAND, S.; GUSTAFSSON-ERICSON, L.; NYLANDER, I. Short- and long-term consequences of different early environmental conditions on central immunoreactive oxytocin and arginine vasopressin levels in male rats. Neuropeptides, v. 44, n. 5, p. 391–398, 1 out. 2010. ORGANIZATION, W. H. World mental health report: transforming mental health for all. 2022. OYOLA, M. G. et al. Distribution and chemical composition of estrogen receptor β neurons in the paraventricular nucleus of the female and male mouse hypothalamus. Journal of Comparative Neurology, v. 525, n. 17, p. 3666–3682, 1 dez. 2017. PAXINOS, G.; FRANKLIN, K. B. J. Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. [s.l.] Academic press, 2019. 107 PAYLOR, R. et al. The use of behavioral test batteries, II: Effect of test interval. Physiology & Behavior, v. 87, n. 1, p. 95–102, 30 jan. 2006. PELLOW, S. et al. Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods, v. 14, n. 3, p. 149–167, 1 ago. 1985. PORCELLI, S. et al. Social brain, social dysfunction and social withdrawal. Neuroscience & Biobehavioral Reviews, v. 97, p. 10–33, 1 fev. 2019. PROUNIS, G. S.; THOMAS, K.; OPHIR, A. G. Developmental trajectories and influences of environmental complexity on oxytocin receptor and vasopressin 1A receptor expression in male and female prairie voles. Journal of Comparative Neurology, v. 526, n. 11, p. 1820–1842, 1 ago. 2018. PSYCHIATRIC ASSOCIATION, A. Manual diagnóstico e estatístico de transtornos mentais: DSM-5 - 5a Edição. [s.d.]. QUINTANA, D. S. et al. The interplay of oxytocin and sex hormones. Neuroscience & Biobehavioral Reviews, v. 163, p. 105765, 1 ago. 2024. QURESHI, S. et al. Diabetes insipidus: Celebrating a century of vasopressin therapy. Endocrinology (United States), v. 155, n. 12, p. 4605–4621, 1 dez. 2014. RAE, M. et al. Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. British Journal of Pharmacology, v. 179, n. 8, p. 1544–1564, 1 abr. 2022. RANA, T. et al. Exploring the role of neuropeptides in depression and anxiety. Progress in Neuro- Psychopharmacology and Biological Psychiatry, v. 114, p. 110478, 2 mar. 2022. RAZAVINASAB, M. et al. Early environmental enrichment prevents cognitive impairments and developing addictive behaviours in a mouse model of prenatal psychological and physical stress. International Journal of Developmental Neuroscience, v. 82, n. 1, p. 72–84, 1 fev. 2022. RIGNEY, N. et al. Oxytocin, Vasopressin, and Social Behavior: From Neural Circuits to Clinical Opportunities. Endocrinology, v. 163, p. 1–13, 2022. 108 RIGNEY, N.; DE VRIES, G. J.; PETRULIS, A. Modulation of social behavior by distinct vasopressin sources. Frontiers in Endocrinology, v. 14, p. 1127792, 13 fev. 2023. ROCKS, D.; CHAM, H.; KUNDAKOVIC, M. Why the estrous cycle matters for neuroscience. Biology of Sex Differences, v. 13, n. 1, p. 1–14, 1 dez. 2022. RODGERS’ AND, R. J. et al. Factor Analysis of Spatiotemporal and Ethological Measures in the Murine Plus-Maze Test of AnxietyPharmacology Biochemistry and Behavior. [s.l: s.n.]. ROSALIE GREER, E. et al. Variations in concentration of oxytocin and vasopressin in the paraventricular nucleus of the hypothalamus during the estrous cycle in rats. Life Sciences, v. 38, n. 25, p. 2311–2318, 23 jun. 1986. ROSENFELD, A.; WELLER, A. Behavioral effects of environmental enrichment during gestation in WKY and Wistar rats. Behavioural Brain Research, v. 233, n. 2, p. 245–255, 1 ago. 2012. SABIHI, S. et al. Oxytocin in the medial prefrontal cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action. Neuropharmacology, v. 125, p. 1–12, 1 out. 2017. SALE, A. et al. Enriched environment and acceleration of visual system development. Neuropharmacology, v. 47, n. 5, p. 649–660, 1 out. 2004. SHACKMAN, A. J.; GEE, D. G. Maternal Perinatal Stress Associated With Offspring Negative Emotionality, But the Underlying Mechanisms Remain Elusive. https://doi.org/10.1176/appi.ajp.20230630, v. 180, n. 10, p. 708–711, 2023. SILVA-ALMEIDA, C. et al. Perinatal environmental enrichment changes anxiety-like behaviours in mice and produces similar intergenerational benefits in offspring. Behavioural Brain Research, v. 456, p. 114700, 5 jan. 2024. SIMPSON, J.; KELLY, J. P. The impact of environmental enrichment in laboratory rats—Behavioural and neurochemical aspects. Behavioural Brain Research, v. 222, n. 1, p. 246–264, 12 set. 2011. ŠKOPKOVÁ, J. et al. The effect of AVP and DGAVP on the exploratory activity of rats. Peptides, v. 8, n. 5, p. 785–790, 1 set. 1987. 109 SMITH, A. S. et al. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Molecular Psychiatry 2016 21:8, v. 21, n. 8, p. 1137–1144, 5 jan. 2016. SMITH, C. J. W.; DIBENEDICTIS, B. T.; VEENEMA, A. H. Comparing vasopressin and oxytocin fiber and receptor density patterns in the social behavior neural network: Implications for cross-system signaling. Frontiers in Neuroendocrinology, v. 53, p. 100737, 1 abr. 2019. SMITH, S. M.; VALE, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, v. 8, n. 4, p. 383–395, 31 dez. 2006. SONG, Z.; ALBERS, H. E. Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Frontiers in Neuroendocrinology, v. 51, p. 14–24, 1 out. 2018. SOUMIER, A. et al. Differential fate between oxytocin and vasopressin cells in the developing mouse brain. iScience, v. 25, n. 1, p. 103655, 21 jan. 2022. SPARLING, J. E. et al. Environmental enrichment and its influence on rodent offspring and maternal behaviours, a scoping style review of indices of depression and anxiety. Pharmacology Biochemistry and Behavior, v. 197, p. 172997, 1 out. 2020. SPARLING, J. E.; BAKER, S. L.; BIELAJEW, C. Effects of combined pre- and post-natal enrichment on anxiety-like, social, and cognitive behaviours in juvenile and adult rat offspring. Behavioural Brain Research, v. 353, p. 40–50, 1 nov. 2018. STEIN, M. B.; SAREEN, J. CLINICAL PRACTICE. Generalized Anxiety Disorder. The New England journal of medicine, v. 373, n. 21, p. 2059–68, 19 nov. 2015. STRÖHLE, A.; GENSICHEN, J.; DOMSCHKE, K. The Diagnosis and Treatment of Anxiety Disorders. Deutsches Ärzteblatt International, v. 115, n. 37, p. 611, 14 set. 2018. TANG, Y. et al. Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nature Neuroscience 2020 23:9, v. 23, n. 9, p. 1125–1137, 27 jul. 2020. TERRANOVA, M. L.; LAVIOLA, G. Scoring of social interactions and play in mice during adolescence. Current protocols in toxicology, v. Chapter 13, 2005. 110 THOR, D. H.; HOLLOWAY, W. R. Developmental analyses of social play behavior in juvenile rats. Bulletin of the Psychonomic Society, v. 22, n. 6, p. 587–590, 5 nov. 1984. THORSELL, A.; NÄTT, D. Maternal stress and diet may influence affective behavior and stress- response in offspring via epigenetic regulation of central peptidergic function. Environmental Epigenetics, v. 2, n. 3, 1 ago. 2016. TIRKO, N. N. et al. Oxytocin Transforms Firing Mode of CA2 Hippocampal Neurons. Neuron, v. 100, n. 3, p. 593- 608.e3, 7 nov. 2018. TSUDA, M. C.; YAMAGUCHI, N.; OGAWA, S. Early life stress disrupts peripubertal development of aggression in male mice. NeuroReport, v. 22, n. 6, p. 259–263, 20 abr. 2011. VAN DEN BERGH, B. R. H. et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neuroscience & Biobehavioral Reviews, v. 117, p. 26–64, 1 out. 2020. VAN DEN POL, A. N. Neuropeptide Transmission in Brain Circuits. Neuron, v. 76, n. 1, p. 98–115, 4 out. 2012. VEENEMA, A. H.; BREDEWOLD, R.; DE VRIES, G. J. Sex-specific modulation of juvenile social play by vasopressin. Psychoneuroendocrinology, v. 38, n. 11, p. 2554–2561, 1 nov. 2013. VEENEMA, A. H.; BREDEWOLD, R.; NEUMANN, I. D. Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: Link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology, v. 32, n. 5, p. 437–450, 1 jun. 2007. VIAU, V. et al. Independent and Overlapping Effects of Corticosterone and Testosterone on Corticotropin-Releasing Hormone and Arginine Vasopressin mRNA Expression in the Paraventricular Nucleus of the Hypothalamus and Stress-Induced Adrenocorticotropic Hormone Release. Journal of Neuroscience, v. 19, n. 15, p. 6684–6693, 1 ago. 1999. WEI, F. et al. Experiences affect social behaviors via altering neuronal morphology and oxytocin system. Psychoneuroendocrinology, v. 129, p. 105247, 1 jul. 2021a. 111 WEI, F. et al. Oxytocin system driven by experiences modifies social recognition and neuron morphology in female BALB/c mice. Peptides, v. 146, 1 dez. 2021b. WHITAKER, J. W. et al. Effects of Enrichment and Litter Parity on Reproductive Performance and Behavior in BALB/c and 129/Sv Mice. Journal of the American Association for Laboratory Animal Science : JAALAS, v. 55, n. 4, p. 387, 1 jul. 2016. WINTER, J.; JUREK, B. The interplay between oxytocin and the CRF system: regulation of the stress response. Cell and Tissue Research, v. 375, n. 1, p. 85–91, 28 jan. 2019. WOTJAK, C. T. et al. Forced swimming stimulates the expression of vasopressin and oxytocin in magnocellular neurons of the rat hypothalamic paraventricular nucleus. European Journal of Neuroscience, v. 13, n. 12, p. 2273–2281, 1 jun. 2001. YANG, C.; QI, Y.; SUN, Z. The Role of Sonic Hedgehog Pathway in the Development of the Central Nervous System and Aging-Related Neurodegenerative Diseases. Frontiers in Molecular Biosciences, v. 8, p. 711710, 8 jul. 2021. YANG, F. et al. Estradiol decreases rat depressive behavior by estrogen receptor beta but not alpha: No correlation with plasma corticosterone. NeuroReport, v. 25, n. 2, p. 100–104, 2014. YOSHIDA, M. et al. Evidence That Oxytocin Exerts Anxiolytic Effects via Oxytocin Receptor Expressed in Serotonergic Neurons in Mice. Journal of Neuroscience, v. 29, n. 7, p. 2259–2271, 18 fev. 2009. ZHANG, L. et al. Hypothalamic vasopressin system regulation by maternal separation: Its impact on anxiety in rats. Neuroscience, v. 215, p. 135–148, 26 jul. 2012. ZHANG, Y. M. et al. Environmental Enrichment Reverses Maternal Sleep Deprivation-Induced Anxiety-Like Behavior and Cognitive Impairment in CD-1 Mice. Frontiers in Behavioral Neuroscience, v. 16, 13 jul. 2022. ZHENG, J. J. et al. Enriched Environment Rearing from Birth Reduced Anxiety, Improved Learning and Memory, and Promoted Social Interactions in Adult Male Mice. Neuroscience, v. 442, p. 138–150, 21 ago. 2020. 112 ZUENA, A. R. et al. Maternal exposure to environmental enrichment before and during gestation influences behaviour of rat offspring in a sex-specific manner. Physiology & Behavior, v. 163, p. 274– 287, 1 set. 2016.reponame:Repositório Institucional da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJinfo:eu-repo/semantics/openAccessORIGINALSAMANTHA COSTA AMORIM MUNIZ.pdfSAMANTHA COSTA AMORIM MUNIZ.pdfapplication/pdf7835726https://rima.ufrrj.br/jspui/bitstream/20.500.14407/22020/1/SAMANTHA%20COSTA%20AMORIM%20MUNIZ.pdf15f8ea7d3dbe4c259e52cfe0ad4f9060MD51TEXTSAMANTHA COSTA AMORIM MUNIZ.pdf.txtSAMANTHA COSTA AMORIM MUNIZ.pdf.txtExtracted texttext/plain268884https://rima.ufrrj.br/jspui/bitstream/20.500.14407/22020/3/SAMANTHA%20COSTA%20AMORIM%20MUNIZ.pdf.txt06244218c5667545023b33502ae907caMD53THUMBNAILSAMANTHA COSTA AMORIM MUNIZ.pdf.jpgSAMANTHA COSTA AMORIM MUNIZ.pdf.jpgGenerated Thumbnailimage/jpeg1369https://rima.ufrrj.br/jspui/bitstream/20.500.14407/22020/4/SAMANTHA%20COSTA%20AMORIM%20MUNIZ.pdf.jpgb6d0d036720e9aa12ca18ecfeaf38e6fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://rima.ufrrj.br/jspui/bitstream/20.500.14407/22020/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.14407/220202025-05-31 02:04:47.783oai:rima.ufrrj.br:20.500.14407/22020Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.bropendoar:2025-05-31T05:04:47Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
| dc.title.pt_BR.fl_str_mv |
Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo |
| dc.title.alternative.pt_BR.fl_str_mv |
Perinatal environmental enrichment effects on anxiety-like behavior and sociability and the potential involvement of vasopressinergic and oxytocinergic neurons in the paraventricular nucleus of the hypothalamus |
| title |
Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo |
| spellingShingle |
Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo Muniz, Samantha Costa Amorim Fisiologia camundongo comportamento neurodesenvolvimento mouse behavior neurodevelopment |
| title_short |
Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo |
| title_full |
Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo |
| title_fullStr |
Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo |
| title_full_unstemmed |
Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo |
| title_sort |
Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo |
| author |
Muniz, Samantha Costa Amorim |
| author_facet |
Muniz, Samantha Costa Amorim |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Muniz, Samantha Costa Amorim |
| dc.contributor.advisor1.fl_str_mv |
Rocha, Fabio Fagundes da |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3804957959723162 |
| dc.contributor.referee1.fl_str_mv |
Rocha, Fabio Fagundes da |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3804957959723162 |
| dc.contributor.referee2.fl_str_mv |
Soares, Bruno Lobão |
| dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0003-4564-2288 |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3124118595692286 |
| dc.contributor.referee3.fl_str_mv |
Almeida, Claudio da Silva |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/0560189477795224 |
| dc.contributor.referee4.fl_str_mv |
Mecawi, Andre de Souza |
| dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0003-4517-6221 |
| dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/7081349017203771 |
| dc.contributor.referee5.fl_str_mv |
Oliveira, Norma Aparecida Almeida Figueiredo de |
| dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/8601494649709728 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9757526021421357 |
| contributor_str_mv |
Rocha, Fabio Fagundes da Rocha, Fabio Fagundes da Soares, Bruno Lobão Almeida, Claudio da Silva Mecawi, Andre de Souza Oliveira, Norma Aparecida Almeida Figueiredo de |
| dc.subject.cnpq.fl_str_mv |
Fisiologia |
| topic |
Fisiologia camundongo comportamento neurodesenvolvimento mouse behavior neurodevelopment |
| dc.subject.por.fl_str_mv |
camundongo comportamento neurodesenvolvimento mouse behavior neurodevelopment |
| description |
Os transtornos de ansiedade estão entre as condições psiquiátricas de maior prevalência na população ocidental, levando à perda da qualidade de vida das pessoas acometidas. Isso reflete em prejuízos no convívio social, no desempenho escolar e no trabalho, além de promover grandes custos financeiros tanto para o paciente quanto para os sistemas de saúde. Diferentes mecanismos estão envolvidos no desenvolvimento de transtornos de ansiedade, dentre eles, alterações neuroendócrinas, como por exemplo, disfunções dos sistemas vasopressinérgico e ocitocinérgico. Além disso, disfunções nesses sistemas também podem causar déficits sociais, prejudicando a capacidade de integrar habilidades comportamentais, cognitivas e afetivas para se adaptar a diferentes contextos sociais. Ansiedade e déficits sociais são características comuns em transtornos neuropsiquiátricos, como depressão, transtornos bipolares e autismo. Eventos ocorridos no período perinatal têm grande impacto no comportamento do indivíduo desde a infância até a idade adulta. Fatores desfavoráveis nesta fase, têm sido correlacionados com a manifestação de doenças neuropsiquiátricas devido à sensibilidade neuroplástica desse período no desenvolvimento do sistema nervoso central. Por outro lado, ambientes favoráveis podem melhorar as capacidades cognitivas e emocionais. Neste trabalho, avaliamos os efeitos do enriquecimento ambiental (EA) perinatal no comportamento social e comportamento análogo à ansiedade em camundongos adolescentes e adultos, tanto machos quanto fêmeas. Também foi realizada uma análise por imunofluorescência dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo. Na adolescência, os grupos submetidos ao ambiente enriquecido perinatal (AEP) apresentaram um aumento de 144,9% no tempo de brincadeira social em comparação aos animais de ambiente padrão perinatal (APP) (fator ambiente: F1,28 = 12,23, p = 0,0016). O EA perinatal não foi capaz de promover redução dos comportamentos ansiosos no teste do labirinto em cruz elevado (LCE) e da caixa claro- escuro (CCE). Contudo, no LCE, o aumento da atividade locomotora em 23,6% foi observado nos animais AEP em comparação aos animais APP (fator ambiente: (F1,60 = 4.28, p = 0,04). Na análise dos neurônios vasopressinérgicos, não foram encontradas diferenças significativas nos animais adolescentes. Porém, na análise dos neurônios ocitocinérgicos, os animais EAP apresentavam área do soma 10,7% maior que os APP (fator ambiente: F1,17 = 4,95, p = 0,03), assim como um aumento de 7,5% no diâmetro (fator ambiente: F1,17 = 13,2, p = 0,002). Nos adultos, independente do sexo, não houve diferenças significativas nos comportamentos sociais no teste de sociabilidade e preferência pela novidade social. Contudo, os animais EAP apresentaram aumento da atividade exploratória neste teste, com aumento no número de rearing 88,1% maior que dos animais APP (fator ambiente: F1,57 = 5,10, p = 0,02). No teste do LCE, os animais enriquecidos demonstraram evidente redução dos comportamentos ansiosos, com aumento de 67,12% do tempo relativo de permanência nos braços abertos em relação aos |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-05-30T10:40:06Z |
| dc.date.available.fl_str_mv |
2025-05-30T10:40:06Z |
| dc.date.issued.fl_str_mv |
2025-02-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MUNIZ, Samantha Costa Amorim. Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo. 2025. 112 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. |
| dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/22020 |
| identifier_str_mv |
MUNIZ, Samantha Costa Amorim. Efeitos do enriquecimento ambiental perinatal no comportamento análogo à ansiedade e na sociabilidade e o possível envolvimento dos neurônios vasopressinérgicos e ocitocinérgicos do núcleo paraventricular do hipotálamo. 2025. 112 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. |
| url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/22020 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.references.pt_BR.fl_str_mv |
ABBOTT, P. W. et al. Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology, v. 90, p. 9–21, 1 abr. 2018. ADHIKARI, A. Distributed circuits underlying anxiety. Frontiers in Behavioral Neuroscience, v. 8, n. APR, p. 82707, 1 abr. 2014. ALCÁNTARA-ALONSO, V. et al. Altered functionality of the corticotrophin-releasing hormone receptor-2 in the hypothalamic paraventricular nucleus of hyperphagic maternally separated rats. Neuropeptides, v. 63, p. 75–82, 1 jun. 2017. ALLEN, A. J.; LEONARD, H.; SWEDO, S. E. Current Knowledge of Medications for the Treatment of Childhood Anxiety Disorders. Journal of the American Academy of Child & Adolescent Psychiatry, v. 34, n. 8, p. 976–986, 1 ago. 1995. AYERS, L. W. et al. Oxytocin Reduces Background Anxiety in a Fear-Potentiated Startle Paradigm: Peripheral vs Central Administration. Neuropsychopharmacology 2011 36:12, v. 36, n. 12, p. 2488– 2497, 27 jul. 2011. BAHI, A.; DREYER, J. L. Dopamine transporter (DAT) knockdown in the nucleus accumbens improves anxiety- and depression-related behaviors in adult mice. Behavioural Brain Research, v. 359, p. 104– 115, 1 fev. 2019. BARACZ, S. J.; EVERETT, N. A.; CORNISH, J. L. The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: Applicability of oxytocin as a pharmacotherapy. Neuroscience & Biobehavioral Reviews, v. 110, p. 114–132, 1 mar. 2020. BARIBEAU, D. A.; ANAGNOSTOU, E. Oxytocin and vasopressin: Linking pituitary neuropeptides and their receptors to social neurocircuits. Frontiers in Neuroscience, v. 9, n. SEP, p. 160850, 24 set. 2015. BAYERL, D. S.; HÖNIG, J. N.; BOSCH, O. J. Vasopressin V1a, but not V1b, receptors within the PVN of lactating rats mediate maternal care and anxiety-related behaviour. Behavioural Brain Research, v. 305, p. 18–22, 15 maio 2016. BEERY, A. K.; KAUFER, D. Stress, social behavior, and resilience: Insights from rodents. Neurobiology of Stress, v. 1, n. 1, p. 116–127, 1 jan. 2015. 98 BELL, M. R. Comparing Postnatal Development of Gonadal Hormones and Associated Social Behaviors in Rats, Mice, and Humans. Endocrinology, v. 159, n. 7, p. 2596–2613, 1 jul. 2018. BIELSKY, I. F. et al. The V1a Vasopressin Receptor Is Necessary and Sufficient for Normal Social Recognition: A Gene Replacement Study. Neuron, v. 47, n. 4, p. 503–513, 18 ago. 2005. BLACK, M. M. et al. Early childhood development coming of age: science through the life course. The Lancet, v. 389, n. 10064, p. 77–90, 7 jan. 2017. BOCK, J. et al. Stress In Utero: Prenatal Programming of Brain Plasticity and Cognition. Biological Psychiatry, v. 78, n. 5, p. 315–326, 1 set. 2015. BORLAND, J. M. et al. Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology, v. 95, p. 128–137, 1 set. 2018. BORROW, A. P. et al. Chronic Variable Stress Induces Sex-Specific Alterations in Social Behavior and Neuropeptide Expression in the Mouse. Endocrinology, v. 159, n. 7, p. 2803–2814, 1 jul. 2018. BORROW, A. P. et al. Chronic variable stress alters hypothalamic-pituitary-adrenal axis function in the female mouse. Physiology & Behavior, v. 209, p. 112613, 1 out. 2019. BOURIN, M.; HASCOËT, M. The mouse light/dark box test. European Journal of Pharmacology, v. 463, n. 1–3, p. 55–65, 28 fev. 2003. BREACH, M. R. et al. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Hormones and Behavior, v. 157, p. 105427, 1 jan. 2024. BREDEWOLD, R. et al. Involvement of dopamine, but not norepinephrine, in the sex-specific regulation of juvenile socially rewarding behavior by vasopressin. Neuropsychopharmacology 2018 43:10, v. 43, n. 10, p. 2109–2117, 22 maio 2018. BRUST, V.; SCHINDLER, P. M.; LEWEJOHANN, L. Lifetime development of behavioural phenotype in the house mouse (Mus musculus). Frontiers in Zoology, v. 12, n. 1, p. 1–14, 24 ago. 2015. 99 BURFORD, N. G.; WEBSTER, N. A.; CRUZ-TOPETE, D. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System. International Journal of Molecular Sciences 2017, Vol. 18, Page 2150, v. 18, n. 10, p. 2150, 16 out. 2017. CALDWELL, H. K. Oxytocin and sex differences in behavior. Current Opinion in Behavioral Sciences, v. 23, p. 13–20, 1 out. 2018. CANCEDDA, L. et al. Acceleration of Visual System Development by Environmental Enrichment. Journal of Neuroscience, v. 24, n. 20, p. 4840–4848, 19 maio 2004. CÁRDENAS, L. et al. Enriched environment restricted to gestation accelerates the development of sensory and motor circuits in the rat pup. International Journal of Developmental Neuroscience, v. 41, p. 68–73, 1 abr. 2015. CARTER, C. S. The oxytocin-vasopressin pathway in the context of love and fear. Frontiers in Endocrinology, v. 8, n. DEC, p. 322440, 22 dez. 2017. CHAOULOFF, F.; DURAND, M.; MORM~DE, P. Anxiety-and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light testsBehavioural Brain Research. [s.l: s.n.]. CHAOULOFF, F.; DURAND, M.; MORMÈDE, P. Anxiety- and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light tests. Behavioural Brain Research, v. 85, n. 1, p. 27–35, 1 abr. 1997. CHAPILLON, P. et al. Rearing environmental enrichment in two inbred strains of mice: 1. Effects on emotional reactivity. Behavior Genetics, v. 29, n. 1, p. 41–46, 1999. CHEN, P.; HONG, W. Neural Circuit Mechanisms of Social Behavior. Neuron, v. 98, n. 1, p. 16–30, 4 abr. 2018. CHEN, S. et al. Morpho-Electric Properties and Diversity of Oxytocin Neurons in Paraventricular Nucleus of Hypothalamus in Female and Male Mice. Journal of Neuroscience, v. 42, n. 14, p. 2885– 2904, 6 abr. 2022. 100 CHEN, X. et al. Human pharmacology of positive GABA-A subtype-selective receptor modulators for the treatment of anxiety. Acta pharmacologica Sinica, v. 40, n. 5, p. 571–582, 1 maio 2019. CONNORS, E. J. et al. Environmental enrichment models a naturalistic form of maternal separation and shapes the anxiety response patterns of offspring. Psychoneuroendocrinology, v. 52, n. 1, p. 153–167, 1 fev. 2015. CORREDOR, K. et al. Behavioral effects of environmental enrichment on male and female wistar rats with early life stress experiences. Frontiers in Physiology, v. 13, p. 837661, 26 set. 2022. COSTALL, B. et al. Exploration of mice in a black and white test box: Validation as a model of anxiety. Pharmacology Biochemistry and Behavior, v. 32, n. 3, p. 777–785, 1 mar. 1989. CRAWLEY, J.; GOODWIN, F. K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior, v. 13, n. 2, p. 167–170, 1 ago. 1980. CRAWLEY, J. N. Designing mouse behavioral tasks relevant to autistic-like behaviors. Mental retardation and developmental disabilities research reviews, v. 10, n. 4, p. 248–258, 2004. CURLEY, J. P. et al. Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behavior in mice. Frontiers in Behavioral Neuroscience, v. 3, n. SEP, p. 816, 15 set. 2009. CYMERBLIT-SABBA, A. et al. Prenatal Enriched Environment improves emotional and attentional reactivity to adulthood stress. Behavioural Brain Research, v. 241, n. 1, p. 185–190, 15 mar. 2013. DANDI, Ε. et al. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental Neuroscience, v. 67, p. 19–32, 1 jun. 2018. DE KOCK, C. P. J. et al. Somatodendritic Secretion in Oxytocin Neurons Is Upregulated during the Female Reproductive Cycle. Journal of Neuroscience, v. 23, n. 7, p. 2726–2734, 1 abr. 2003. 101 DE SOUZA, M. A. et al. Prenatal stress produces social behavior deficits and alters the number of oxytocin and vasopressin neurons in adult rats. Neurochemical Research, v. 38, n. 7, p. 1479–1489, 30 jul. 2013. DÖLEN, G. et al. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013 501:7466, v. 501, n. 7466, p. 179–184, 11 set. 2013. DOUGLAS, A. J. Vasopressin and oxytocin. Techniques in the Behavioral and Neural Sciences, v. 15, n. PART 1, p. 205–229, 1 jan. 2005. DUMAIS, K. M.; VEENEMA, A. H. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Frontiers in Neuroendocrinology, v. 40, p. 1–23, 1 jan. 2016. DUQUE-WILCKENS, N. et al. Inhibition of vasopressin V1a receptors in the medioventral bed nucleus of the stria terminalis has sex- and context-specific anxiogenic effects. Neuropharmacology, v. 110, p. 59–68, 1 nov. 2016. DURÁN-CARABALI, L. E. et al. Prenatal and Early Postnatal Environmental Enrichment Reduce Acute Cell Death and Prevent Neurodevelopment and Memory Impairments in Rats Submitted to Neonatal Hypoxia Ischemia. Molecular Neurobiology, v. 55, n. 5, p. 3627–3641, 1 maio 2018. FERRAGUTI, F. Metabotropic glutamate receptors as targets for novel anxiolytics. Current Opinion in Pharmacology, v. 38, p. 37–42, 1 fev. 2018. FISCH, J. et al. Effects of environmental enrichment on reproductive performance and quantity and morphology of cumulus-oocyte complexes obtained from Rattus norvegicus. Theriogenology, v. 94, p. 114–119, 1 maio 2017. FREDA, S. N. et al. Brainwide input-output architecture of paraventricular oxytocin and vasopressin neurons. bioRxiv, p. 2022.01.17.476652, 18 jan. 2022. FROEMKE, R. C.; YOUNG, L. J. Oxytocin, Neural Plasticity, and Social Behavior. Annual Review of Neuroscience, v. 44, n. Volume 44, 2021, p. 359–381, 8 jul. 2021. 102 GOLDSTEIN, E. Z. et al. Prolonged Environmental Enrichment Promotes Developmental Myelination. Frontiers in Cell and Developmental Biology, v. 9, p. 665409, 26 abr. 2021. GRINEVICH, V.; LUDWIG, M. The multiple faces of the oxytocin and vasopressin systems in the brain. Journal of neuroendocrinology, v. 33, n. 11, 1 nov. 2021. GUBERT, C.; HANNAN, A. J. Environmental enrichment as an experience-dependent modulator of social plasticity and cognition. Brain Research, v. 1717, p. 1–14, 15 ago. 2019. GUNAYDIN, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell, v. 157, n. 7, p. 1535–1551, 19 jun. 2014. HAMMOCK, E. A. D. Developmental Perspectives on Oxytocin and Vasopressin. Neuropsychopharmacology, v. 40, n. 1, p. 24, 1 jan. 2015. HAN, R. T. et al. Long-Term Isolation Elicits Depression and Anxiety-Related Behaviors by Reducing Oxytocin-Induced GABAergic Transmission in Central Amygdala. Frontiers in Molecular Neuroscience, v. 11, p. 398858, 14 ago. 2018. HAN, Y. et al. The role of enriched environment in neural development and repair. Frontiers in Cellular Neuroscience, v. 16, p. 890666, 21 jul. 2022. HERNÁNDEZ, V. S. et al. Extra-neurohypophyseal axonal projections from individual vasopressin- containing magnocellular neurons in rat hypothalamus. Frontiers in Neuroanatomy, v. 9, n. OCT, p. 151582, 6 out. 2015. HERNÁNDEZ, V. S. et al. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: Implications for anxiety and stress coping. Frontiers in Neural Circuits, v. 10, n. NOV, p. 230703, 18 nov. 2016. HUNG, L. W. et al. Gating of social reward by oxytocin in the ventral tegmental area. Science, v. 357, n. 6358, p. 1406–1411, 29 set. 2017. JAKUBOVSKI, E. et al. Systematic review and meta-analysis: Dose–response curve of SSRIs and SNRIs in anxiety disorders. Depression and Anxiety, v. 36, n. 3, p. 198–212, 1 mar. 2019. 103 JANAK, P. H.; TYE, K. M. From circuits to behaviour in the amygdala. Nature 2015 517:7534, v. 517, n. 7534, p. 284–292, 14 jan. 2015. JI, N. N.; JIANG, H.; XIA, M. The influence of the enriched environment in different periods on neonatal maternal separation-induced visceral pain, anxiousness, and depressive behaviors. Translational Pediatrics, v. 11, n. 9, p. 1562–1569, 1 set. 2022. JIN, Y. et al. The Role of Oxytocin in Early-Life-Stress-Related Neuropsychiatric Disorders. International Journal of Molecular Sciences 2023, Vol. 24, Page 10430, v. 24, n. 13, p. 10430, 21 jun. 2023. JOBIM, C. M. N.; 073.525.166-54; HTTP://LATTES.CNPQ.BR/4464338559548820. Efeito do enriquecimento ambiental perinatal de fêmeas em comportamentos relacionados a ansiedade na sua prole. 25 maio 2016. JUREK, B.; NEUMANN, I. D. The oxytocin receptor: From intracellular signaling to behavior. Physiological Reviews, v. 98, n. 3, p. 1805–1908, 1 jul. 2018. KAIDANOVICH-BEILIN, O. et al. Assessment of Social Interaction Behaviors. Journal of Visualized Experiments : JoVE, n. 48, p. 2473, 2011. KHOSRAVI, H.; KHALILZADEH, E.; VAFAEI SAIAH, G. Pain-induced aggression and changes in social behavior in mice. Aggressive Behavior, v. 47, n. 1, p. 89–98, 1 jan. 2021. KIM, D. G. et al. Social Interaction Test in Home Cage as a Novel and Ethological Measure of Social Behavior in Mice. Experimental Neurobiology, v. 28, n. 2, p. 247, 1 abr. 2019. KNOBLOCH, H. S. et al. Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response. Neuron, v. 73, n. 3, p. 553–566, 9 fev. 2012. KOROSI, A.; BARAM, T. Z. The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, v. 583, n. 2–3, p. 204–214, 7 abr. 2008. KUNDAKOVIC, M.; JARIC, I. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes 2017, Vol. 8, Page 104, v. 8, n. 3, p. 104, 18 mar. 2017. 104 LI, K. et al. A Cortical Circuit for Sexually Dimorphic Oxytocin-Dependent Anxiety Behaviors. Cell, v. 167, n. 1, p. 60- 72.e11, 22 set. 2016. LI, K. A.; LUND, E. T.; VOIGT, J. P. W. The impact of early postnatal environmental enrichment on maternal care and offspring behaviour following weaning. Behavioural Processes, v. 122, p. 51–58, 1 jan. 2016. LISTER, R. G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology, v. 92, n. 2, p. 180–185, jun. 1987. LIU, H. et al. Neonatal exposure to sevoflurane impairs preference for social novelty in C57BL/6 female mice at early-adulthood. Biochemical and Biophysical Research Communications, v. 593, p. 129–136, 19 fev. 2022. LIVIA TERRANOVA, M.; LAVIOLA, G. Individual differences in mouse behavioural development: effects of precocious weaning and ongomg sexual segregation. Animal Behaviour, v. 50, n. 5, p. 1261–1271, 1 jan. 1995a. LIVIA TERRANOVA, M.; LAVIOLA, G. Individual differences in mouse behavioural development: effects of precocious weaning and ongomg sexual segregation. Animal Behaviour, v. 50, n. 5, p. 1261–1271, 1 jan. 1995b. LUBY, J. L.; ROGERS, C.; MCLAUGHLIN, K. A. Environmental Conditions to Promote Healthy Childhood Brain/Behavioral Development: Informing Early Preventive Interventions for Delivery in Routine Care. Biological Psychiatry Global Open Science, v. 2, n. 3, p. 233–241, 1 jul. 2022. LUCASSEN, P. J. et al. Activation of Vasopressin Neurons in Aging and Alzheimer’s Disease. Journal of Neuroendocrinology, v. 6, n. 6, p. 673–679, 1 dez. 1994. LUKAS, M. et al. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: Male juvenile versus female adult conspecifics. Psychoneuroendocrinology, v. 38, n. 6, p. 916–926, 1 jun. 2013. MADRIGAL, M. DEL P.; JURADO, S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Communications Biology 2021 4:1, v. 4, n. 1, p. 1–16, 14 maio 2021. 105 MAIKOO, S.; WILKINS, A.; QULU, L. The effect of oxytocin and an enriched environment on anxiety- like behaviour and corticosterone levels in a prenatally stressed febrile seizure rat model. IBRO Neuroscience Reports, v. 13, p. 47–56, 1 dez. 2022. MAO, Y. et al. Concurrent environmental enrichment and chronic restraint stress: Effects on innate anxiety and depressive-like behavior in male adolescent mice. International Journal of Developmental Neuroscience, v. 80, n. 8, p. 730–736, 1 dez. 2020. MARTIN, E. I. et al. The Neurobiology of Anxiety Disorders: Brain Imaging, Genetics, and Psychoneuroendocrinology. Clinics in Laboratory Medicine, v. 30, n. 4, p. 865–891, 1 dez. 2010. MARTINEZ, A. R.; BRUNELLI, S. A.; ZIMMERBERG, B. Communal nesting exerts epigenetic influences on affective and social behaviors in rats selectively bred for an infantile trait. Physiology & Behavior, v. 139, p. 97–103, 1 fev. 2015. MEYER-LINDENBERG, A. et al. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nature Reviews Neuroscience 2011 12:9, v. 12, n. 9, p. 524–538, 19 ago. 2011. MILBOCKER, K. A. et al. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Frontiers in Behavioral Neuroscience, v. 15, p. 786234, 2 dez. 2021. MINHAS, S. et al. Stress-induced oxytocin release and oxytocin cell number and size in prepubertal and adult male and female rats. General and Comparative Endocrinology, v. 234, p. 103–109, 1 ago. 2016. MOREIRA, V. B. et al. Parental behavior and anxiety in isogenic and outbred mice given access to two types of nesting materials. Applied Animal Behaviour Science, v. 215, p. 68–76, 1 jun. 2019. MOY, S. S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes, brain, and behavior, v. 3, n. 5, p. 287–302, out. 2004. MURGATROYD, C. et al. Impaired Repression at a Vasopressin Promoter Polymorphism Underlies Overexpression of Vasopressin in a Rat Model of Trait Anxiety. Journal of Neuroscience, v. 24, n. 35, p. 7762–7770, 1 set. 2004. 106 NEAL, S. et al. Enriched environment exposure enhances social interactions and oxytocin responsiveness in male long-evans rats. Frontiers in Behavioral Neuroscience, v. 12, p. 395307, 5 set. 2018. NEWMAN, S. W. The Medial Extended Amygdala in Male Reproductive Behavior A Node in the Mammalian Social Behavior Network. Annals of the New York Academy of Sciences, v. 877, n. 1, p. 242–257, 1 jun. 1999. NITHIANANTHARAJAH, J.; HANNAN, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews Neuroscience 2006 7:9, v. 7, n. 9, p. 697–709, set. 2006. NYGAARD, K. R.; MALONEY, S. E.; DOUGHERTY, J. D. Erroneous inference based on a lack of preference within one group: Autism, mice, and the social approach task. Autism Research, v. 12, n. 8, p. 1171–1183, 1 ago. 2019. ONAKA, T.; TAKAYANAGI, Y. The oxytocin system and early-life experience-dependent plastic changes. Journal of Neuroendocrinology, v. 33, n. 11, 1 nov. 2021. OPAS – ORGANIZAÇÃO PAN-AMERICANA DE SAÚDE. Relatório sobre a saúde no mundo: transtornos mentais em crescimento. OPAS – Organização Pan-Americana de SaúdeWashington, D.C., 2018. ORELAND, S.; GUSTAFSSON-ERICSON, L.; NYLANDER, I. Short- and long-term consequences of different early environmental conditions on central immunoreactive oxytocin and arginine vasopressin levels in male rats. Neuropeptides, v. 44, n. 5, p. 391–398, 1 out. 2010. ORGANIZATION, W. H. World mental health report: transforming mental health for all. 2022. OYOLA, M. G. et al. Distribution and chemical composition of estrogen receptor β neurons in the paraventricular nucleus of the female and male mouse hypothalamus. Journal of Comparative Neurology, v. 525, n. 17, p. 3666–3682, 1 dez. 2017. PAXINOS, G.; FRANKLIN, K. B. J. Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. [s.l.] Academic press, 2019. 107 PAYLOR, R. et al. The use of behavioral test batteries, II: Effect of test interval. Physiology & Behavior, v. 87, n. 1, p. 95–102, 30 jan. 2006. PELLOW, S. et al. Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods, v. 14, n. 3, p. 149–167, 1 ago. 1985. PORCELLI, S. et al. Social brain, social dysfunction and social withdrawal. Neuroscience & Biobehavioral Reviews, v. 97, p. 10–33, 1 fev. 2019. PROUNIS, G. S.; THOMAS, K.; OPHIR, A. G. Developmental trajectories and influences of environmental complexity on oxytocin receptor and vasopressin 1A receptor expression in male and female prairie voles. Journal of Comparative Neurology, v. 526, n. 11, p. 1820–1842, 1 ago. 2018. PSYCHIATRIC ASSOCIATION, A. Manual diagnóstico e estatístico de transtornos mentais: DSM-5 - 5a Edição. [s.d.]. QUINTANA, D. S. et al. The interplay of oxytocin and sex hormones. Neuroscience & Biobehavioral Reviews, v. 163, p. 105765, 1 ago. 2024. QURESHI, S. et al. Diabetes insipidus: Celebrating a century of vasopressin therapy. Endocrinology (United States), v. 155, n. 12, p. 4605–4621, 1 dez. 2014. RAE, M. et al. Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. British Journal of Pharmacology, v. 179, n. 8, p. 1544–1564, 1 abr. 2022. RANA, T. et al. Exploring the role of neuropeptides in depression and anxiety. Progress in Neuro- Psychopharmacology and Biological Psychiatry, v. 114, p. 110478, 2 mar. 2022. RAZAVINASAB, M. et al. Early environmental enrichment prevents cognitive impairments and developing addictive behaviours in a mouse model of prenatal psychological and physical stress. International Journal of Developmental Neuroscience, v. 82, n. 1, p. 72–84, 1 fev. 2022. RIGNEY, N. et al. Oxytocin, Vasopressin, and Social Behavior: From Neural Circuits to Clinical Opportunities. Endocrinology, v. 163, p. 1–13, 2022. 108 RIGNEY, N.; DE VRIES, G. J.; PETRULIS, A. Modulation of social behavior by distinct vasopressin sources. Frontiers in Endocrinology, v. 14, p. 1127792, 13 fev. 2023. ROCKS, D.; CHAM, H.; KUNDAKOVIC, M. Why the estrous cycle matters for neuroscience. Biology of Sex Differences, v. 13, n. 1, p. 1–14, 1 dez. 2022. RODGERS’ AND, R. J. et al. Factor Analysis of Spatiotemporal and Ethological Measures in the Murine Plus-Maze Test of AnxietyPharmacology Biochemistry and Behavior. [s.l: s.n.]. ROSALIE GREER, E. et al. Variations in concentration of oxytocin and vasopressin in the paraventricular nucleus of the hypothalamus during the estrous cycle in rats. Life Sciences, v. 38, n. 25, p. 2311–2318, 23 jun. 1986. ROSENFELD, A.; WELLER, A. Behavioral effects of environmental enrichment during gestation in WKY and Wistar rats. Behavioural Brain Research, v. 233, n. 2, p. 245–255, 1 ago. 2012. SABIHI, S. et al. Oxytocin in the medial prefrontal cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action. Neuropharmacology, v. 125, p. 1–12, 1 out. 2017. SALE, A. et al. Enriched environment and acceleration of visual system development. Neuropharmacology, v. 47, n. 5, p. 649–660, 1 out. 2004. SHACKMAN, A. J.; GEE, D. G. Maternal Perinatal Stress Associated With Offspring Negative Emotionality, But the Underlying Mechanisms Remain Elusive. https://doi.org/10.1176/appi.ajp.20230630, v. 180, n. 10, p. 708–711, 2023. SILVA-ALMEIDA, C. et al. Perinatal environmental enrichment changes anxiety-like behaviours in mice and produces similar intergenerational benefits in offspring. Behavioural Brain Research, v. 456, p. 114700, 5 jan. 2024. SIMPSON, J.; KELLY, J. P. The impact of environmental enrichment in laboratory rats—Behavioural and neurochemical aspects. Behavioural Brain Research, v. 222, n. 1, p. 246–264, 12 set. 2011. ŠKOPKOVÁ, J. et al. The effect of AVP and DGAVP on the exploratory activity of rats. Peptides, v. 8, n. 5, p. 785–790, 1 set. 1987. 109 SMITH, A. S. et al. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Molecular Psychiatry 2016 21:8, v. 21, n. 8, p. 1137–1144, 5 jan. 2016. SMITH, C. J. W.; DIBENEDICTIS, B. T.; VEENEMA, A. H. Comparing vasopressin and oxytocin fiber and receptor density patterns in the social behavior neural network: Implications for cross-system signaling. Frontiers in Neuroendocrinology, v. 53, p. 100737, 1 abr. 2019. SMITH, S. M.; VALE, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, v. 8, n. 4, p. 383–395, 31 dez. 2006. SONG, Z.; ALBERS, H. E. Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Frontiers in Neuroendocrinology, v. 51, p. 14–24, 1 out. 2018. SOUMIER, A. et al. Differential fate between oxytocin and vasopressin cells in the developing mouse brain. iScience, v. 25, n. 1, p. 103655, 21 jan. 2022. SPARLING, J. E. et al. Environmental enrichment and its influence on rodent offspring and maternal behaviours, a scoping style review of indices of depression and anxiety. Pharmacology Biochemistry and Behavior, v. 197, p. 172997, 1 out. 2020. SPARLING, J. E.; BAKER, S. L.; BIELAJEW, C. Effects of combined pre- and post-natal enrichment on anxiety-like, social, and cognitive behaviours in juvenile and adult rat offspring. Behavioural Brain Research, v. 353, p. 40–50, 1 nov. 2018. STEIN, M. B.; SAREEN, J. CLINICAL PRACTICE. Generalized Anxiety Disorder. The New England journal of medicine, v. 373, n. 21, p. 2059–68, 19 nov. 2015. STRÖHLE, A.; GENSICHEN, J.; DOMSCHKE, K. The Diagnosis and Treatment of Anxiety Disorders. Deutsches Ärzteblatt International, v. 115, n. 37, p. 611, 14 set. 2018. TANG, Y. et al. Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nature Neuroscience 2020 23:9, v. 23, n. 9, p. 1125–1137, 27 jul. 2020. TERRANOVA, M. L.; LAVIOLA, G. Scoring of social interactions and play in mice during adolescence. Current protocols in toxicology, v. Chapter 13, 2005. 110 THOR, D. H.; HOLLOWAY, W. R. Developmental analyses of social play behavior in juvenile rats. Bulletin of the Psychonomic Society, v. 22, n. 6, p. 587–590, 5 nov. 1984. THORSELL, A.; NÄTT, D. Maternal stress and diet may influence affective behavior and stress- response in offspring via epigenetic regulation of central peptidergic function. Environmental Epigenetics, v. 2, n. 3, 1 ago. 2016. TIRKO, N. N. et al. Oxytocin Transforms Firing Mode of CA2 Hippocampal Neurons. Neuron, v. 100, n. 3, p. 593- 608.e3, 7 nov. 2018. TSUDA, M. C.; YAMAGUCHI, N.; OGAWA, S. Early life stress disrupts peripubertal development of aggression in male mice. NeuroReport, v. 22, n. 6, p. 259–263, 20 abr. 2011. VAN DEN BERGH, B. R. H. et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neuroscience & Biobehavioral Reviews, v. 117, p. 26–64, 1 out. 2020. VAN DEN POL, A. N. Neuropeptide Transmission in Brain Circuits. Neuron, v. 76, n. 1, p. 98–115, 4 out. 2012. VEENEMA, A. H.; BREDEWOLD, R.; DE VRIES, G. J. Sex-specific modulation of juvenile social play by vasopressin. Psychoneuroendocrinology, v. 38, n. 11, p. 2554–2561, 1 nov. 2013. VEENEMA, A. H.; BREDEWOLD, R.; NEUMANN, I. D. Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: Link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology, v. 32, n. 5, p. 437–450, 1 jun. 2007. VIAU, V. et al. Independent and Overlapping Effects of Corticosterone and Testosterone on Corticotropin-Releasing Hormone and Arginine Vasopressin mRNA Expression in the Paraventricular Nucleus of the Hypothalamus and Stress-Induced Adrenocorticotropic Hormone Release. Journal of Neuroscience, v. 19, n. 15, p. 6684–6693, 1 ago. 1999. WEI, F. et al. Experiences affect social behaviors via altering neuronal morphology and oxytocin system. Psychoneuroendocrinology, v. 129, p. 105247, 1 jul. 2021a. 111 WEI, F. et al. Oxytocin system driven by experiences modifies social recognition and neuron morphology in female BALB/c mice. Peptides, v. 146, 1 dez. 2021b. WHITAKER, J. W. et al. Effects of Enrichment and Litter Parity on Reproductive Performance and Behavior in BALB/c and 129/Sv Mice. Journal of the American Association for Laboratory Animal Science : JAALAS, v. 55, n. 4, p. 387, 1 jul. 2016. WINTER, J.; JUREK, B. The interplay between oxytocin and the CRF system: regulation of the stress response. Cell and Tissue Research, v. 375, n. 1, p. 85–91, 28 jan. 2019. WOTJAK, C. T. et al. Forced swimming stimulates the expression of vasopressin and oxytocin in magnocellular neurons of the rat hypothalamic paraventricular nucleus. European Journal of Neuroscience, v. 13, n. 12, p. 2273–2281, 1 jun. 2001. YANG, C.; QI, Y.; SUN, Z. The Role of Sonic Hedgehog Pathway in the Development of the Central Nervous System and Aging-Related Neurodegenerative Diseases. Frontiers in Molecular Biosciences, v. 8, p. 711710, 8 jul. 2021. YANG, F. et al. Estradiol decreases rat depressive behavior by estrogen receptor beta but not alpha: No correlation with plasma corticosterone. NeuroReport, v. 25, n. 2, p. 100–104, 2014. YOSHIDA, M. et al. Evidence That Oxytocin Exerts Anxiolytic Effects via Oxytocin Receptor Expressed in Serotonergic Neurons in Mice. Journal of Neuroscience, v. 29, n. 7, p. 2259–2271, 18 fev. 2009. ZHANG, L. et al. Hypothalamic vasopressin system regulation by maternal separation: Its impact on anxiety in rats. Neuroscience, v. 215, p. 135–148, 26 jul. 2012. ZHANG, Y. M. et al. Environmental Enrichment Reverses Maternal Sleep Deprivation-Induced Anxiety-Like Behavior and Cognitive Impairment in CD-1 Mice. Frontiers in Behavioral Neuroscience, v. 16, 13 jul. 2022. ZHENG, J. J. et al. Enriched Environment Rearing from Birth Reduced Anxiety, Improved Learning and Memory, and Promoted Social Interactions in Adult Male Mice. Neuroscience, v. 442, p. 138–150, 21 ago. 2020. 112 ZUENA, A. R. et al. Maternal exposure to environmental enrichment before and during gestation influences behaviour of rat offspring in a sex-specific manner. Physiology & Behavior, v. 163, p. 274– 287, 1 set. 2016. |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Fisiológicas |
| dc.publisher.initials.fl_str_mv |
UFRRJ |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Ciências Biológicas e Da Saúde |
| publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
| instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
| instacron_str |
UFRRJ |
| institution |
UFRRJ |
| reponame_str |
Repositório Institucional da UFRRJ |
| collection |
Repositório Institucional da UFRRJ |
| bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/22020/1/SAMANTHA%20COSTA%20AMORIM%20MUNIZ.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/22020/3/SAMANTHA%20COSTA%20AMORIM%20MUNIZ.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/22020/4/SAMANTHA%20COSTA%20AMORIM%20MUNIZ.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/22020/2/license.txt |
| bitstream.checksum.fl_str_mv |
15f8ea7d3dbe4c259e52cfe0ad4f9060 06244218c5667545023b33502ae907ca b6d0d036720e9aa12ca18ecfeaf38e6f 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
| repository.mail.fl_str_mv |
bibliot@ufrrj.br |
| _version_ |
1849138685942956032 |