Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii

Bibliographic Details
Main Author: Carvalho, Gabriella Oliveira Alves Moreira de
Publication Date: 2023
Format: Doctoral thesis
Language: por
Source: Repositório Institucional da UFRRJ
Download full: https://rima.ufrrj.br/jspui/handle/20.500.14407/19931
Summary: Toxoplasma gondii (T. gondii) é o agente causador da toxoplasmose. Este protozoário possui a característica de ser intracelular obrigatório e ter alta prevalência em todo o mundo, em que se acredita ter infectado um terço da população mundial, causando grande morbidade e mortalidade. Dada à complexidade desta doença, diversas pesquisas têm se dedicado ao estudo de estruturas que estejam associadas às doenças parasitárias. Dentre estas estruturas, estão as Junções Comunicantes que são responsáveis pela troca de íons e pequenos mensageiros que mantém a homeostase tecidual. Estes canais transmembranares exercem um importante papel na comunicação intercelular em diferentes tecidos, pois permitem a comunicação em diferentes tipos celulares, incluindo os macrófagos. Com isto, a caracterização morfológica e funcional das junções comunicantes em macrófagos, e em particular formada pela conexina 43 tem sido alvo de estudo de diversos grupos, mas seus mecanismos regulatórios ainda merecem esclarecimentos, principalmente diante de alterações patológicas, como nos processos infecto-inflamatórios causados pelo T. gondii. Diante disto, o objetivo principal deste estudo foi avaliar a modulação das junções comunicantes na linhagem macrofágica J774-G8, após a infecção com o parasito Toxoplasma gondii e a posterior ativação com fatores pró-imuno inflamatórios. Como metodologia, foi utilizada: (1) Cultura de células J774-G8; (3) Infecção da cultura pelo do T. gondii cepa RH; (4) Tratamento com os fatores pró-imuno inflamatórios individuais e conjugados (IFN-γ, TNF-α, IFN-γ + TNF-α); (5) Ensaios imunoeletroforéticos (Western Blot); e (4) Ensaios de imunofluorescência e análise por microscopia confocal. Os resultados gerais achados foram: (1) A melhora no perfil morfológico das culturas de células J774-G8 infectadas com T. gondii tratadas com os fatores pró-imuno- inflamatórios; (2) O aumento da expressão proteica da Cx43 em células J774- G8 infectadas após o tratamento com os fatores imunes pró-inflamatórios, por 24 e 48 horas; (3) A ativação celular estimulada pelo tratamento com fatores conjugados; (4) Os danos no citoesqueleto celular causados pela infecção foram irreversíveis, mesmo após o tratamento com os fatores pró-imuno inflamatórios em células infectadas; (5) O dano ao citoesqueleto impediu o transporte e o ancoramento da Cx43 na membrana plasmática, porém os fatores proveram um aumento dos níveis citoplasmáticos da Cx43. Com isto foi possível concluir que: a infecção com o T. gondii causa danos irreversíveis nas células macrofágicas, porém o tratamento com fatores pró-imuno inflamatórios estimula a produção da Cx43, que mesmo não conseguindo se inserir na membrana plasmática em células infectadas por conta dos danos no citoesqueleto, pode exercer papéis importantes no processo de manutenção da estrutura celular infectada.
id UFRRJ-1_4feff04abb2fbf96b616bb3d5b66f286
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/19931
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Carvalho, Gabriella Oliveira Alves Moreira deFortes, Fabio da Silva de Azevedohttp://lattes.cnpq.br/8632870958098126Fortes, Fabio da Silva de Azevedohttp://lattes.cnpq.br/8632870958098126Goldenberg, Regina Coeli dos Santoshttps://orcid.org/0000-0002-0886-9603http://lattes.cnpq.br/0433763336350310Seabra, Sergio Henriquehttps://orcid.org/0000-0002-2800-931Xhttp://lattes.cnpq.br/6301573844997242Cortes, Wellington da Silvahttp://lattes.cnpq.br/1305510562756172Marinho, Bruno Guimarãeshttp://lattes.cnpq.br/2685794388394484http://lattes.cnpq.br/24547378607107562025-01-29T15:35:49Z2025-01-29T15:35:49Z2023-04-24CARVALHO, Gabriella Oliveira Alves Moreira de. Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii. 2023. 188 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.https://rima.ufrrj.br/jspui/handle/20.500.14407/19931Toxoplasma gondii (T. gondii) é o agente causador da toxoplasmose. Este protozoário possui a característica de ser intracelular obrigatório e ter alta prevalência em todo o mundo, em que se acredita ter infectado um terço da população mundial, causando grande morbidade e mortalidade. Dada à complexidade desta doença, diversas pesquisas têm se dedicado ao estudo de estruturas que estejam associadas às doenças parasitárias. Dentre estas estruturas, estão as Junções Comunicantes que são responsáveis pela troca de íons e pequenos mensageiros que mantém a homeostase tecidual. Estes canais transmembranares exercem um importante papel na comunicação intercelular em diferentes tecidos, pois permitem a comunicação em diferentes tipos celulares, incluindo os macrófagos. Com isto, a caracterização morfológica e funcional das junções comunicantes em macrófagos, e em particular formada pela conexina 43 tem sido alvo de estudo de diversos grupos, mas seus mecanismos regulatórios ainda merecem esclarecimentos, principalmente diante de alterações patológicas, como nos processos infecto-inflamatórios causados pelo T. gondii. Diante disto, o objetivo principal deste estudo foi avaliar a modulação das junções comunicantes na linhagem macrofágica J774-G8, após a infecção com o parasito Toxoplasma gondii e a posterior ativação com fatores pró-imuno inflamatórios. Como metodologia, foi utilizada: (1) Cultura de células J774-G8; (3) Infecção da cultura pelo do T. gondii cepa RH; (4) Tratamento com os fatores pró-imuno inflamatórios individuais e conjugados (IFN-γ, TNF-α, IFN-γ + TNF-α); (5) Ensaios imunoeletroforéticos (Western Blot); e (4) Ensaios de imunofluorescência e análise por microscopia confocal. Os resultados gerais achados foram: (1) A melhora no perfil morfológico das culturas de células J774-G8 infectadas com T. gondii tratadas com os fatores pró-imuno- inflamatórios; (2) O aumento da expressão proteica da Cx43 em células J774- G8 infectadas após o tratamento com os fatores imunes pró-inflamatórios, por 24 e 48 horas; (3) A ativação celular estimulada pelo tratamento com fatores conjugados; (4) Os danos no citoesqueleto celular causados pela infecção foram irreversíveis, mesmo após o tratamento com os fatores pró-imuno inflamatórios em células infectadas; (5) O dano ao citoesqueleto impediu o transporte e o ancoramento da Cx43 na membrana plasmática, porém os fatores proveram um aumento dos níveis citoplasmáticos da Cx43. Com isto foi possível concluir que: a infecção com o T. gondii causa danos irreversíveis nas células macrofágicas, porém o tratamento com fatores pró-imuno inflamatórios estimula a produção da Cx43, que mesmo não conseguindo se inserir na membrana plasmática em células infectadas por conta dos danos no citoesqueleto, pode exercer papéis importantes no processo de manutenção da estrutura celular infectada.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESToxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis. This protozoan has the characteristic of being obligate intracellular and having a high prevalence worldwide, where it is believed to have infected one third of the world's population, causing great morbidity and mortality. Given the complexity of this disease, several studies have been dedicated to the study of structures that are associated with parasitic diseases. Among these structures are the Communicating Junctions, which are responsible for the exchange of ions and small messengers that maintain tissue homeostasis. These transmembrane channels play an important role in intercellular communication in different tissues, as they allow communication in different cell types, including macrophages. With this, the morphological and functional characterization of gap junctions in macrophages, and in particular formed by connexin 43, has been the subject of study by several groups, but their regulatory mechanisms still deserve clarification, especially in the face of pathological changes, such as in infectious- inflammatory processes caused by T. gondii. In view of this, the main objective of this study was to evaluate the modulation of gap junctions in the macrophage lineage J774-G8, after infection with the parasite Toxoplasma gondii and subsequent activation with inflammatory pro-immune factors. As methodology, it was used: (1) Culture of J774-G8 cells; (3) Infection of the culture by the T. gondii strain RH; (4) Treatment with individual and conjugated pro-immunoinflammatory factors (IFN-γ, TNF-α, IFN-γ + TNF-α); (5) Immunoelectrophoretic assays (Western Blot); and (4) Immunofluorescence assays and analysis by confocal microscopy. The general results found were: (1) Improvement in the morphological profile of cultures of J774-G8 cells infected with T. gondii treated with pro-immune-inflammatory factors; (2) Increased Cx43 protein expression in infected J774-G8 cells after treatment with pro-inflammatory immune factors for 24 and 48 hours; (3) Cell activation stimulated by treatment with conjugated factors; (4) The damage to the cellular cytoskeleton caused by the infection was irreversible, even after treatment with inflammatory pro-immune factors in infected cells; (5) Damage to the cytoskeleton prevented the transport and anchoring of Cx43 in the plasmatic membrane, however the factors provided an increase in the cytoplasmic levels of Cx43. With this, it was possible to conclude that: infection with T. gondii causes irreversible damage to macrophage cells, however treatment with pro-immune inflammatory factors stimulates the production of Cx43, which even though it fails to insert itself into the plasmatic membrane in infected cells due to damage to the cytoskeleton, may play important roles in the process of maintaining the infected cell structure.porUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências FisiológicasUFRRJBrasilInstituto de Ciências Biológicas e Da SaúdeFisiologiaJunção ComunicanteMacrófagosToxoplasma gondiiCommunicating JunctionMacrophagesComunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondiiinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisABBAS, A.K.; LICHTMAN, A.H., PILLAI, S. Imunologia Celular e Molecular - Rio de Janeiro: Elsevier, 7a edição, 2011. ADEREM, A.; UNDERHILL, D.M. Mechanisms of phagocytosis in macrophages. Ann Rev of Immunol v. 17, p. 593 – 623, 1999. ALBERTS B., et al. Molecular Biology of the Cell. New York: Garland Publishing, 3a ed., 1994. ALVES, L.A. et al. Gap junction modulation by extracellular signaling molecules: the thymus model. Braz. J. Med. Biol. Res. v. 33, p. 457–465, 2000. ATTIAS, M. et al. The life-cycle of Toxoplasma gondii reviewed using animations. Parasites & vectors, v. 13, p. 1-13, 2020. AUGUSTO, L. et al.; Toxoplasma gondii co-opts the unfolded protein response to enhance migration and dissemination of infected host cells. Mbio, v. 11, n. 4, p. e00915-20, 2020. BAHIA-OLIVEIRA, Lílian Maria Garcia et al. Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerging infectious diseases, v. 9, n. 1, p. 55, 2003. BALKWILL, F.R.; BURKE, F. The cytokine network. Immunol. v. 10, p. 299–304, 1989. BENNET, M.V.L. et al. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. v. 26, p. 610–617, 2003. BENNETT P.B. , VALENZUELA C , CHEN LQ , KALLEN RG , On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III-IV interdomain. Circ Res. v. 77, n. 3, p. 584- 592, 1995. BENNETT, M.V. et al.; Gap junctions: new tools, new answers, new questions. Neuron v. 6, p. 305-320, 1991. 159 BEYER, E.; STEINBERG TH. Connexin, gap-junction proteins, and ATP-induced pores in macrophages. Progr Cell Res v. 3, p. 71-74, 1993. BEYER, E.C.; STEINBERG, T.H. Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J. Biol. Chem. v. 266, n. 7971, 1991. BEYER, E; STEINBERG TH. Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J. Biol. Chem. v.266, p. 7971-7974, 1991. BOEHM, U. et al. Cellular responses to interferon-gamma. Ann Rev of Immun v. 15, p. 749 – 795, 1997. BOENGLER, K. et al. Connexin 43 in Mitochondria: What Do We Really Know About Its Function?. Frontiers in Physiology, p. 1188, 2022. BOENGLER, K. et al. Connexin 43 in Mitochondria: What Do We Really Know About Its Function?. Frontiers in Physiology, p. 1188, 2022. BOOTHROYD, J. C.; DUBREMETZ, J.F. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nature Reviews Microbiology, v. 6, n. 1, p. 79-88, 2008. Bradford, M.M. Rapid and sensitive method for the quantitation of microgran quatities of protein utilizing the principle of protein-dye binding. Anal Biochem. v. 72, p. 248-54, 1976. BRADLEY, P.J.; SIBLEY, L. D. Rhoptries: an arsenal of secreted virulence factors. Current opinion in microbiology, v. 10, n. 6, p. 582-587, 2007. BRITZ-CUNNINGHAN, S.H.; Mutations of the connexin43 gap junction gene in patients with heart malformations and defects of laterality. New Engl J Med v. 332, p.1323-29, 1995. BRUZZONE, R; WHITE, TW; GOODENOUGH, DA. The cellular internet: on- line with connexins. BioEssays v.18, n.9, p. 709-718, 1996. 160 BURT J.M.; SPRAY D.C.; Inotropic agents modulate gap junctional conductance between cardiac myocytes. Am J Physiol v.254, p.1206-1210, 1988. CAFFARO, C.E.; BOOTHROYD, J.C. Evidence for host cells as the major contributor of lipids in the intravacuolar network of Toxoplasma-infected cells. Eukaryotic Cell, v. 10, n. 8, p. 1095-1099, 2011. CAMPOS DE CARVALHO A.C., et al. Gap junction distribution is altered between cardiac myocytes infected with Trypanosoma cruzi. Circ. Res. v.70, p. 733–742, 1992. CAMPOS DE CARVALHO A.C., et al. Gap Junction disappearance in astrocytes and leptomeningeal cells as a consequence of protozoan infection. Brain Res. v.20, n.790 p. 304-314, 1998. CARRERAS-SUREDA, A.; PIHAN, P.; Hetz, C. Sinalização de cálcio no retículo endoplasmático: ajuste fino das respostas ao estresse. Cell Calcium , v.70 , p. 24-31, 2018. CARRUTHERS, V. B.; SIBLEY, L. D. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. European journal of cell biology, v. 73, n. 2, p. 114-123, 1997. CASEY B.; BALLABIO A. Connexin 43 mutations in sporadic and familial defects of laterality. N Engl J Med. v. 333 n. 14 p. 941-942, 1995. CDC. Toxoplasmose - epidemiologia e fatores de risco. Atlanta: Centros de Controle e Prevenção de Doenças; 2018. Disponível em https://www.cdc.gov/parasites/toxoplasmosis/epi.html. Acessado em 08 de abril de 2023 as 20:05h Chanson, M. (2005) Gap junctional communication in tissue inflammation and repair. Biochim. Biophys. Acta 1711, 197–207 161 CHARRON, Audra J.; SIBLEY, L. David. Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. Journal of cell science, v. 115, n. 15, p. 3049-3059, 2002. CHEN, G. et al. NOD-like receptors: role in innate immunity and inflammatory disease. Annual review of pathology. v. 4, p. 365-98, 2009. CHEN, G. Y.; NUÑEZ, G. Sterile inflammation: sensing and reacting to damage. Nature Reviews Immunology, v. 10, p. 826- 837, 2010 Contreras, J.E.1 , Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res. Brain Res. Rev. 47, 290–303 Cotran, RS.; Kumar, V.; Robbins, S. Robbins Pathologic Basis of Disease. Schoen, FJ., editor. W. B. Saunders Company; Philadelphia: 1994. p. 1255-1259. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420:860–867. CROOKE, S.N. et al. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Experimental gerontology. v. 124, n. 110632, 2019. CUZZOCREA, S. Shock, inflammation and PARP. Pharmacological Research, v. 52, p. 72-82, 2005. Das Sarma J, Meyer RA, Wang F, Abraham V, Lo CW, Koval M (2001). Multimeric connexin interactions prior to the trans-Golgi network. J Cell Sci. 114 (Pt 22):4013-24. Davis, D.M. (2007) Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol. 7, 238–243 De Maio, A. et al. (2002) Gap junctions, homeostasis, and injury. J. Cell. Physiol. 191, 269–282 162 DE MENDONÇA, João Silva. Princípios gerais de terapêutica. de Souza W, Belfort Jr R. Toxoplasmose e Toxoplasma gondii. Rio de Janeiro: Fiocruz, p. 209-14, 2014. DE SOUSA, W., MARTINS-DUARTE, E. S., LEMGRUBER, L., ATTIAS, M., VOMMARO, R. C. Structural organization of the tachyzoite of Toxoplasma gondii. Scientia Medica, v. 20, n. 1, p. 131-143, 2010. DE SOUZA BREDA, Cristiane Naffah et al. Mitochondria as central hub of the immune system. Redox biology, v. 26, p. 101255, 2019. Dean, C., Pichersky, E., and Dunsmuir, P. (1989). Structure, evolution and regulation of rbcSgenes in higher plants. Annu. Rev. Plant Physiol. 40, 415-439. Delmar, M; Stergiopoulos, K; Homma, N; Calero G; Morley, G; Ek-Victorin, JF & Taffet, SM. (2000) A molecular model for the chemical regulation of connexin43 channels: The “Ball-and-Chain) Hypothesis. Gap junctions: Molecular basis of cell communication in health and disease (Edited by Camillo Peracchia) – Current Topics in Membranes 49, Chapter 11, 223-248 Dermietzel, R & Spray, DC. (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci. 16, 186 –192 DEROUIN, F. et al. Experimental models of toxoplasmosis. Pharmacological applications. Parasite (Paris, France), v. 2, n. 3, p. 243-256, 1995. DESMONTS, G. et al. ETUDE EPIDEMIOLOGIQUE SUR LA TOXOPLASMOSE- DE LINFLUENCE DE LA CUISSON DES VIANDES DE BOUCHERIE SUR LA FREQUENCE DE LINFECTION HUMAINE. REVUE FRANCAISE D ETUDES CLINIQUES ET BIOLOGIQUES, v. 10, n. 9, p. 952-&, 1965. Dhein, S. (1998). Gap junction channels in the cardiovascular system: pharmacological and physiological modulation. Trends Pharmacol. Sci. 19, 229-241. 163 DUARTE, A.G.P. et al. Anti-toxoplasma gondii effect of metalocomplex compounds N0414 and N5814. Brazilian Journal of Development, v. 7, n. 2, p. 16541-16555, 2021. Dubey JP., Frenkel JK. Feline toxoplasmosis from acutely infected mice and the development of Toxoplasma cysts. Journal of Protozoology ,23, 4, 537, 1976. DUBEY, J. P. Advances in the life cycle of Toxoplasma gondii. International journal for parasitology, v. 28, n. 7, p. 1019-1024, 1998. DUBEY, J. P. Long-term persistence of Toxoplasma gondii in tissues of pigs inoculated with T gondii oocysts and effect of freezing on viability of tissue cysts in pork. American journal of veterinary research, v. 49, n. 6, p. 910-913, 1988. DUBEY, J. P. The History of Toxoplasma gondii—The First 100 Years. Journal of Eukaryotic Microbiology, v. 6, n. 55, p. 467–475, 2008. DUBEY, J. P., LAGO, E. G., GENNARI, S.M., SU, C. and JONES, J. L. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology, p. 1 of 50, 2012 DUBEY, J. P.; FRENKEL, J. K. Cyst‐induced toxoplasmosis in cats. The Journal of protozoology, v. 19, n. 1, p. 155-177, 1972. DUBEY, J. P.; HILL, D. Toxoplasma gondii: Transmission and Prevention. Clin Microbiol Rev, v. 8, n. 10, p. 634-640, 2002. DUBEY, J. P.; LINDSAY, D. S.; SPEER, C. A. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Review, v.11, n.2, p.267-99, 1998. DUBEY, J. P.; LINDSAY, D. S.; SPEER, CA106833. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical microbiology reviews, v. 11, n. 2, p. 267-299, 1998. DUNCANSON, Phil et al. High levels of congenital transmission of Toxoplasma gondii in a commercial sheep flock. International journal for parasitology, v. 31, n. 14, p. 1699-1703, 2001. 164 Elbez-Rubinstein A, Ajzenberg D, Darde ML, Cohen R, Dumetre A, Yera H, Gondon E, Janaud JC, Thulliez P. Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. J Infect Dis. 2009;199:280–285. Elmore SA, Jones JL, Conrad PA, Patton S, Lindsay DS, Dubey JP. Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends Parasitol 2010; 26(4): 190-196. ENGLISH, Elizabeth D.; BOYLE, Jon P. Impact of engineered expression of mitochondrial association factor 1b on Toxoplasma gondii infection and the host response in a mouse model. Msphere, v. 3, n. 5, p. e00471-18, 2018. Eugenin EA, Branes MC, Berman JW & Saez JC (2003). TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/ macrophages that enhance physiological responses. J Immunol. 170(3): 1320-8. Eugenin, E.A; Eckardt, D; Theis, M; Willecke, K; Bennett, MVL & Saéz, JC. (2001) Microglia at brain stab wounds express connexin and in vitro form functional gap junctions after treatment with interferon-γ and tumor necrosis factor-α. Proc Natl Acad Sci USA 98, 4190-4195 Evans WH & Martin PE (2002) Gap junctions: structure and function (Review). Mol Membr Biol. 19(2):121-36. FERGUSON, D.J.P.; BIRCH-ANDERSEN, J. C.S.; HUTCHISON W. M. Observations on the ultrastructure of the sporocyst and the initiation of sporozoite formation in Toxoplasma gondii. Acta Pathol Microbiol. v. 86, p.165–167, 1978. FERGUSON, David JP. Toxoplasma gondii and sex: essential or optional extra?. Trends in parasitology, v. 18, n. 8, p. 351-355, 2002. FERGUSON, David JP. Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore. Memorias do Instituto Oswaldo Cruz, v. 104, p. 133-148, 2009. 165 FERREIRA, Flávia Batista et al. Serological evidence of Toxoplasma gondii infection in Melanosuchus niger (Spix, 1825) and Caimam crocodilus (Linnaeus, 1758). International Journal for Parasitology: Parasites and Wildlife, v. 12, p. 42-45, 2020. FERREIRA-DA-SILVA, M. F.; BARBOSA, H. S.; GROSS U.; LÜDER, C. G. Stress-related and spontaneous stage differentiation of Toxoplasma gondii. Molecular Biosystems. n.4, p.824-834,2008 Flagg-Newton, J., Simponson, I. & Loewenstein, W.R. (1979). Permeability of the cell-to-cell membrane channels in mammalian cell junctions. Science 205, 404. Fortes, F.S.A., Pecora IL, Persechini PM, Hurtado S, Costa V, Coutinho-Silva R, Braga MB, Silva-Filho FC, Bisaggio RC, De Farias FP, Scemes E, De Carvalho AC & Goldenberg RC (2004). Modulation of intercellular communication in macrophages: possible interactions between Gap junctions and P2 receptors. J Cell Sci. 117(Pt 20): 4717-26. Friedl, P. et al. (2005) Tuning immune responses: diversity and adaptation of the immunological synapse. Nat. Rev. Immunol. 5, 532–545 Fujimoto, J., Sawamoto, K., Okabe, M., Okano, H., Yamamoto, T. (1997). Molecular cloning and characterization of focal adhesion kinase of Drosophila melanogaster. Mol. Biol. Cell 8(Suppl.): 399a. FUKUMOTO, Junpei et al. Rhoptry kinase protein 39 (ROP39) is a novel factor that recruits host mitochondria to the parasitophorous vacuole of Toxoplasma gondii. Biology open, v. 10, n. 9, p. bio058988, 2021. Furshpan, E.J. & Potter, D.D. (1959). Transmission at the giant motor synapses of the crayfish. J. Physiol. 154, 289. Gaietta, G; Deerinck, TJ; Adams, SR; Bouwer, J; Tour, O; Laird, DW; Sosinsky, GE; Tsien, RY & Ellisman, MH. (2002) Science 96, 503-507 166 Galluzzi, L., Diotallevi, A., & Magnani, M. (2017). Endoplasmic reticulum stress and unfolded protein response in infection by intracellular parasites. Future science OA, 3(3), FSO198. Giepmans BN1 . Gap junctions and connexin-interacting proteins. Cardiovasc Res. 2004 May 1;62(2):233-45. GILBERT, Ruth E. et al. Ocular sequelae of congenital toxoplasmosis in Brazil compared with Europe. PLoS Neglected Tropical Diseases, v. 2, n. 8, p. e277, 2008. Gilula, N.B., Reeves, O.R. & Steinbach, A. (1972). Metabolic coupling, ionic coupling and cell contacts. Nature 235, 262. Gimlich, RL; Kumar, NM & Gilula, NB (1990). Differential regulation of the levels of three gap junction mRNAs in Xenopus embryos. J. Cell. Biol. 110, 597-605. GOMES, Ligia C.; BENEDETTO, Giulietta Di; SCORRANO, Luca. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature cell biology, v. 13, n. 5, p. 589-598, 2011. Gong, X.; Li, E; Klier, G; Huang, Q; Wu, Y; Lei, H; Kumar, NM; Horwitz, J & Gilula, NB. (1997) Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91, 833-43 Goodenough D.A. and Paul D.L. Gap Junctions; Cold Spring Harb Perspect Biol. 2009 Jul; 1(1): a002576. Goodenough, D. A., J. A. Goliger, and D. L. Paul. 1996. Connexins, connexons, and intercellular communication. Annu. Rev. Biochem. 65:475. Goodenough, DA (1992) The crystalline lens: a system networked by gap junction intercellular communication. Sem Cell Biol 49-58 GORDON, S. The macrophage: past, present and future. European journal of immunology, v. 37, n. S1, p. S9-S17, 2007. 167 GRAINDORGE, Arnault et al. The conoid associated motor MyoH is indispensable for Toxoplasma gondii entry and exit from host cells. PLoS Pathogens, v. 12, n. 1, p. e1005388, 2016. Green, CR & Severs, NJ (1993). Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease. Histochemistry 99 105-120. Gros, DB; Nicholson, BJ & Revel, JP (1983). Comparative analysis of gap junction protein from rat heart and liver: is there a tissue specificity of gap junctions? Cell 35, 539. GUIMARÃES, E. V.; DE CARVALHO, L.; BARBOSA, H. S. Primary culture of skeletal muscle cells as a model for studies of Toxoplasma gondii cystogenesis. International Journal for Parasitology, v.94, p.72-83, 2008. HAMMEL, J.H et al. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annual review of biomedical engineering. v. 23 p. 461-491, 2021. Handel, A.; Yates, A.; Pilyugin, S.S.; Antia, R.; Gap junction- mediated antigen transport in immune responses. Trends Immunol. 2007 Nov; 28 (11): 463-6. Epub 2007 Oct 24. Hansson and Skiöldebrand. Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation. Journal of Inflammation (2015) Hehl, A.B.; Basso, W.U; Lippuner, C.; Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genomics. V.16, n66, p.1-16, 2015. Herve, JC (2005). The Connexins. Biochim Biophys Acta. 1711, 97 – 98. Herve, JC; Bourmeyster N & Sarrouilhe D (2004). Diversity in protein–protein interactions of connexins: emerging roles. Biochim Biophys Acta.1662 (1–2), 22– 41 168 Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature reviews Molecular cell biology, 13(2), 89- 102. HETZ, Claudio; ZHANG, Kezhong; KAUFMAN, Randal J. Mechanisms, regulation and functions of the unfolded protein response. Nature reviews Molecular cell biology, v. 21, n. 8, p. 421-438, 2020. Hide, G.; Role of vertical transmission of Toxoplasma gondii in prevalence of infection - EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2016 VOL. 14, NO. 3, 335–344 HILL, D. AND DUBEY, J. P. Oxoplasma gondii: transmission, diagnosis and prevention. Europan Society of Clinical Microbiology and Infectius diseases. v. 8, p. 634-640, 2002 HOFF, Eleanor F.; CARRUTHERS, Vern B. Is Toxoplasma egress the first step in invasion?. Trends in parasitology, v. 18, n. 6, p. 251-255, 2002. HORN JR, Adolfo et al. Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells. Journal of inorganic biochemistry, v. 128, p. 38-47, 2013. HU, Ke et al. Cytoskeletal components of an invasion machine—the apical complex of Toxoplasma gondii. PLoS pathogens, v. 2, n. 2, p. e13, 2006. inducible nitric oxide synthase degradation by the proteasome pathway. Parasitology International 63 (2014) 659–663. JACOBS, Leon; REMINGTON, Jack S.; MELTON, Marjorie L. The resistance of the encysted form of Toxoplasma gondii. The Journal of parasitology, v. 46, n. 1, p. 11-21, 1960. Jawetz, E; Melnick, JL; Adelberg, EA; Brooks, GF; Butel, JS & Morse, SA. (1995) Microbiologia Médica - Ed. Guanabara Koogan, 20a edição, RJ 169 John SA, Revel JP (1991). Connexon integrity is maintained by non-covalent bonds: intramolecular disulfide bonds link the extracellular domains in rat connexin-43. Biochem Biophys Res Commun. 178(3):1312-8 JONES, J. L.; DUBEY, J. P. Waterborne toxoplasmosis–recent developments. Experimental parasitology, v. 124, n. 1, p. 10-25, 2010. Jones, J.L.; Dargelas, V; Roberts , J.; Press, C.; Remington, J. S.; Montoya, J. G., 2009, Risk Factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 Jongsma, HJ; Wilders, R; Takens-Kwak, BR & Rook, MB. (1993) Gap junctions: Progress in Cell Research 3, 187-192 JOYCE, Bradley R. et al. The unfolded protein response in the protozoan parasite Toxoplasma gondii features translational and transcriptional control. Eukaryotic cell, v. 12, n. 7, p. 979-989, 2013. Junqueira, LC & Carneiro, J. (1998) Histologia Básica. Ed. Guanabara Koogan, 8a edição, RJ KAFSACK, Björn FC; CARRUTHERS, Vern B. Apicomplexan perforin-like proteins. Communicative & integrative biology, v. 3, n. 1, p. 18-23, 2010. KALANI, Hamed et al. Comparison of eight cell-free media for maintenance of Toxoplasma gondii tachyzoites. Iranian journal of parasitology, v. 11, n. 1, p. 104, 2016. Kane, A.B. & Bols, N.C. (1980) A study of metabolic cooperation with rat peritoneal macrophages. J. cell. Physiol. 102, 385-393. Kane, AB & Bols, NC. (1980) A study of metabolic cooperation with rat peritoneal macrophages. J. Cell Physiol 102, 385-393 KELLERMANN, Malte; SCHARTE, Felix; HENSEL, Michael. Manipulation of host cell organelles by intracellular pathogens. International Journal of Molecular Sciences, v. 22, n. 12, p. 6484, 2021. 170 KIM, Ji Yeon et al. Interaction between parasitophorous vacuolar membrane- associated GRA3 and calcium modulating ligand of host cell endoplasmic reticulum in the parasitism of Toxoplasma gondii. The Korean journal of parasitology, v. 46, n. 4, p. 209, 2008. Koval, .;Molina, SA.; Burt, JM. Mix and match: Investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett. 2014 ; 588(8): 1193–1204 Kumar, NM & Gilula, NB (1996). The gap junction communication channel. Cell 84, 381-388. Kwak B.R, Hermans M.M, De Jonge HR, Lohmann SM, Jongsma HJ & Chanson M. (1995) Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 6, 1707-19 Lago, E. G., Neto, E. C., Melamed, J., Rucks, A. P., Presotto, C., Coelho, J. C., ... & Fiori, R. M. (2007). Congenital toxoplasmosis: late pregnancy infections detected by neonatal screening and maternal serological testing at delivery. Paediatric and perinatal epidemiology, 21(6), 525-531. Laird DW, Puranam KL, Revel JP (1991) Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1): 67–72. LAIRD, D.W. Life cycle of connexins in health and disease. Biochem. J. (2006) 394, 527–543 LAIRD, Dale W.; LAMPE, Paul D. Cellular mechanisms of connexin-based inherited diseases. Trends in Cell Biology, v. 32, n. 1, p. 58-69, 2022 LALIBERTE, Julie; CARRUTHERS, Vernon B. Host cell manipulation by the human pathogen Toxoplasma gondii. Cellular and molecular life sciences, v. 65, p. 1900-1915, 2008. Langston PK, Shibata M, Horng T. Metabolism Supports Macrophage Activation. Front Immunol. 2017 Jan 31;8:61. 171 Levine ND, Corliss JO, Cox FE, Deroux G, Grain J, Honigberg BM, Leedale GF, Loeblich AR 3rd, Lom J, Lynn D, Merinfeld EG, Page FC, Poljansky G, Sprague V, Vavra J, Wallace FG. A newly revised classification of the protozoa. J Protozool. 1980 Feb;27(1):37-58. Levy, JA; Weiss, RM; Dirksen, ER & Rosen, MR. (1976) Possible communication between murine macrophages oriented in linear chains in tissue culture. Exp Cell Res 103, 375-385 Lilly, E.; Sellitto, C.; Milstone, LM.; White, TW. Connexin channels in congenital skin disorders. 2015. Seminars in Cell and Developmental Biology LIMA, Tatiane S.; LODOEN, Melissa B. Mechanisms of human innate immune evasion by Toxoplasma gondii. Frontiers in cellular and infection microbiology, v. 9, p. 103, 2019. LIMA, Tatiane S.; LODOEN, Melissa B. Mechanisms of human innate immune evasion by Toxoplasma gondii. Frontiers in cellular and infection microbiology, v. 9, p. 103, 2019. Loewenstein, WR. (1966) Permeability of membrane junctions. Ann N York Acad Sci. 137, 441. Loewenstein, WR. (1981) Gap junctions. Physiol. Rev. 61, 829-913 LOPES-MORI, Fabiana Maria Ruiz et al. Programas de controle da toxoplasmose congênita. Revista da Associação Médica Brasileira, v. 57, n. 5, p. 594-599, 2011. LOURIDO, Sebastian. Toxoplasma gondii. PARASITE OF THE MONTH, VOLUME 35, ISSUE 11, P944-945, NOVEMBER 2019. LOVETT, Jennie L. et al. Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from inositol 1, 4, 5-triphosphate (IP3)/ryanodine- sensitive stores. Journal of Biological Chemistry, v. 277, n. 29, p. 25870- 25876, 2002 172 LÜDERA, C. G. K.; BOHNEA, W.; SOLDATI, D. Toxoplasmosis: a persisting challenge. Trends Parasitol. v.17, P. 460-3, 2001. LYONS, Russell E.; MCLEOD, Rima; ROBERTS, Craig W. Toxoplasma gondii tachyzoite–bradyzoite interconversion. Trends in parasitology, v. 18, n. 5, p. 198-201, 2002. MacMicking, J; Xie, Q-X & Nathan, CF. (1997) Nitric oxide and macrophage function. Annual Review of Immunology 15, 323 – 350 MadhumitaJagannathan-Bogdan and Leonard I. Zon .Hematopoiesis. Development. 2013 Jun 15; 140(12): 2463–2467. Mahmoudi, S., Mamishi, S., Suo, X., Keshavarz, H., Early detection of Toxoplasma gondii infection by using a interferon gamma release assay: A review, Experimental Parasitology (2017), Makowski, L., Caspar, D.L.D., Phillips, W.C. & Goodenough, D.A. (1977). Gap junction structures. II. Analysis of X-ray diffraction data. J. Cell. Biol. 74, 629-645. MANN, Tara; BECKERS, Con. Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Molecular and biochemical parasitology, v. 115, n. 2, p. 257-268, 2001. Martin, CA; Homaidan, FR; Palaia,T; Burakoff, R & el-Sabban, ME. (1998) Gap junctional communication between murine macrophages and intestinal epithelial cell lines. Cell Adhes Commun 6, 437-49 MARTINON, Fabio et al. Toll-like receptor activation of XBP1 regulates innate immune responses in macrophages. Nature immunology, v. 11, n. 5, p. 411, 2010. MARTINS-DUARTE, Erica S. et al. In vitro activity of N-phenyl-1, 10- phenanthroline-2-amines against tachyzoites and bradyzoites of Toxoplasma gondii. Bioorganic & Medicinal Chemistry, v. 50, p. 116467, 2021. 173 MONDRAGON, RICARDO; FRIXIONE, EUGENIO. Ca2+‐dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology, v. 43, n. 2, p. 120-127, 1996. MONDRAGON, RICARDO; FRIXIONE, EUGENIO. Ca2+‐dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology, v. 43, n. 2, p. 120-127, 1996. MONDRAGON, RICARDO; FRIXIONE, EUGENIO. Ca2+‐dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology, v. 43, n. 2, p. 120-127, 1996. Montecino-Rodriguez, E. et al. (2000) Expression of connexin 43 (cx43) is critical for normal hematopoiesis. Blood 96, 917–924 MONTEIRO, V. G. et al. Morphological changes during conoid extrusion in Toxoplasma gondii tachyzoites treated with calcium ionophore. Journal of structural biology, v. 136, n. 3, p. 181-189, 2001. MOSSER, D.M.; EDWARDS, J.P. Exploring the full spectrum of macrophage activation. Nature reviews immunology, v. 8, n. 12, p. 958-969, 2008. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med. 1998; 157:1666–1680. MURPHY, K.; TRAVARES, P.; WALPORT, M. Imunobiologia de Janeway. São Paulo: Artmed, 7ed. 2010. MURRAY, P.J. Macrophage Polarization. Annual review of physiology v. 79, p. 541-566, 2017. MURRAY, Peter J.; WYNN, Thomas A. Protective and pathogenic functions of macrophage subsets. Nature reviews immunology, v. 11, n. 11, p. 723-737, 2011. Musil, L & Goodenough, DA. (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74, 1065-77. 174 NATH, M.; POKHARIA, S.; YADAV, R. Calix [4] arenes as Molecular Platforms in Magnetic Resonance Imagery. Coord. Chem. Rev, v. 215, p. 99-149, 2001. NICOLLE, Charles. Sur une infection a corps de Leishman (on organismes voisons) du gondi. CR Acad Sci, v. 147, p. 736, 1908. Nihei, O.K. et al. (2003) A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. Am. J. Physiol. Cell Physiol. 285, C1304–C1313 Noma A & Tsuboi N. (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guineapig. J Physiol 382 193-211. of sporozoite formation in Toxoplasma gondii. Acta Pathol. Microbiol. Oviedo-Orta, E. (2002) Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol. Int. 26, 253–263 Oviedo-Orta, E. and Evans, W.H. (2004) Gap junctions and connexinmediated communication in the immune system. Biochim. Biophys. Acta 1662, 102–112 Oviedo-Orta, E. et al. (2001) Immunoglobulin and cytokine expression in mixed lymphocyte cultures is reduced by disruption of gap junction intercellular communication. FASEB J. 15, 768–774 Padrão, J.C., Cabral, G.R. A.; Silva, M.F.S.; Seabra, S.H.; DaMatta, R. A. Toxoplasma gondii infection of activated J774-A1 macrophages causes PAREDES-SANTOS, Tatiana Christina; DE SOUZA, Wanderley; ATTIAS, Márcia. Dynamics and 3D organization of secretory organelles of Toxoplasma gondii. Journal of structural biology, v. 177, n. 2, p. 420-430, 2012. PARK, Jeongho; HUNTER, Christopher A. The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite immunology, v. 42, n. 7, p. e12712, 2020. 175 Paul, D (1986). Molecular cloning of cDNA for rat liver gap junction proteins. J. Cell Biol 103, 123-134. Peracchia, C. Chemical gating of gap junction channels Roles of calcium, pH and calmodulin, Biochimica et Biophysica Acta 1662 (2004) 61 – 80 PERNAS, Lena et al. Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids. Cell Metabolism, v. 27, n. 4, p. 886-897. e4, 2018. PERNAS, Lena et al. Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS biology, v. 12, n. 4, p. e1001845, 2014. PERNAS, Lena; SCORRANO, Luca. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annual review of physiology, v. 78, p. 505-531, 2016. Pinkerton, H. , and David W. . "Toxoplasma infection in man." Arch. Pathol. 30.1 (1940). Polacek, D; Lal, R; Volin, MV & Davies, PF (1993) Gap junctional communication between vascular cells. Am. J. Pathol. 142, 593-605 Polontchouck, L; Haefliger, JA; Ebelt, B; Schaefer, T; Stuhlmann, D; Mehlhorn, U; Kuhn-Regnier, F; De Vivie, ER & Dhein, S. (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J. Amer. Coll. Cardiol. 38, 883-891 PONCET, Anaïs F. et al. The UPR sensor IRE1α promotes dendritic cell responses to control Toxoplasma gondii infection. EMBO reports, v. 22, n. 3, p. e49617, 2021. PORTER S. B., SANDER, M. A. Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. The New England Journal of Medicine, n. 23, p. 1643-1648, 1992. 176 PORTES, J. A. et al. In vitro treatment of Toxoplasma gondii with copper (II) complexes induces apoptosis-like and cellular division alterations. Veterinary parasitology, v. 245, p. 141-152, 2017. PORTES, J. A. et al. Reduction of Toxoplasma gondii development due to inhibition of parasite antioxidant enzymes by a dinuclear iron (III) compound. Antimicrobial agents and chemotherapy, v. 59, n. 12, p. 7374- 7386, 2015. PORTES, Juliana A. et al. Intracellular life of protozoan Toxoplasma gondii: Parasitophorous vacuole establishment and survival strategies. Biocell, v. 47, n. 4, 2023. PORTES, Juliana de A. et al. A new iron (III) complex-containing sulfadiazine inhibits the proliferation and induces cystogenesis of Toxoplasma gondii. Parasitology research, v. 117, p. 2795-2805, 2018. PRINZ, William A.; TOULMAY, Alexandre; BALLA, Tamas. The functional universe of membrane contact sites. Nature Reviews Molecular Cell Biology, v. 21, n. 1, p. 7-24, 2020. RAMAKRISHNAN, Srinivasan et al. The intracellular parasite T oxoplasma gondii depends on the synthesis of long‐chain and very long‐chain unsaturated fatty acids not supplied by the host cell. Molecular microbiology, v. 97, n. 1, p. 64- 76, 2015. RAMÍREZ-MACÍAS, Inmaculada et al. Biological activity of three novel complexes with the ligand 5-methyl-1, 2, 4-triazolo [1, 5-a] pyrimidin-7 (4 H)-one against Leishmania spp. Journal of antimicrobial chemotherapy, v. 66, n. 4, p. 813-819, 2011. REGGIORI, Fulvio; KLIONSKY, Daniel J. Autophagy in the eukaryotic cell. Eukaryotic cell, v. 1, n. 1, p. 11-21, 2002. Revel, J.P. & Karnovsky, M.J. (1967). Hexagonal array of subunits in intercellular junctions of mouse heart and liver, J. Cell. Biol. 33, C7 – C12. 177 REY, L. In: Toxoplasma gondii e toxoplasmose. Parasitologia: parasitos e doenças parasitárias do homem nos trópicos ocidentais. 4 ed. Rio de Janeiro: Guanabara Koogan, 2008, p.162- 206. RODJAKOVIC, D.; SALM, L.; BELDI, G.; Função da conexina-43 em macrófagos. Jornal internacional de ciências moleculares. v. 22, n. 3, pág. 1412, 2021. RODJAKOVIC, Daniel; SALM, Lilian; BELDI, Guido. Function of connexin-43 in macrophages. International journal of molecular sciences, v. 22, n. 3, p. 1412, 2021. RODJAKOVIC, Daniel; SALM, Lilian; BELDI, Guido. Function of connexin-43 in macrophages. International journal of molecular sciences, v. 22, n. 3, p. 1412, 2021. ROHLOFF, Peter et al. Calcium uptake and proton transport by acidocalcisomes of Toxoplasma gondii. PLoS One, v. 6, n. 4, p. e18390, 2011. ROMANO, Julia D. et al. The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network. Journal of Cell Biology, v. 216, n. 12, p. 4235-4254, 2017. Ross R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 1999; 340:115–126. SABIN, Albert B.; OLITSKY, Peter K. Toxoplasma and obligate intracellular parasitism. Science, v. 85, n. 2205, p. 336-338, 1937. Saéz, J.C. & Spray, D.C. (1991). Cell Functions. In: Encyclopedia of Human Biology, volume 2. Academic Press. Inc. – New York / USA. Saez, J.C. et al. (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol. Rev. 83, 1359–1400 Saéz, JC; Brañes, MC; Corvalán, LA; Eugenín, EA; González, H.; Martínez, AD & Palisson, F. (2000) Gap junctions in cells of the immune system: 178 structure, regulation and possible functional roles. Braz. J. Med. Biol. Res. 33, 447-455 SANKARAMOORTHY, Aravind; ROY, Sayon. High glucose-induced apoptosis is linked to mitochondrial connexin 43 level in RRECs: implications for diabetic retinopathy. Cells, v. 10, n. 11, p. 3102, 2021. Scand. Sect. B 86:165–167. Schaible, UE; Collins, HL & Kaufmann, SHE. (1999) Confrontation between intracellular bacteria and the immune system. Adv Immunol 71, 313- 367 Seabra, S.H., de Souza, W., & DaMatta, R.A. Toxoplasma gondii partially inhibits nitric oxide production of activated murine macrophages. Exp. Parasitol. (2002), 100: 62- 70. Segretain D & Falk MM. (2004). Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta. 1662(1-2): 3-21. Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 2017 Severs NJ, Dupont E, Coppen SR, Halliday D, Inett E, Baylis D & Rothery S (2004). Remodelling of gap junctions and connexin expression in heart disease. Biochim Biophys Acta. 1662(1-2):138-48. Severs, N.J., Dupont, E., Thomas, N., Kaba, R., Rothery, S., Jain, R., et al., 2006. Alterations in cardiac connexin expression in cardiomyopathies. Adv. Cardiol. 42, 228–242. SHAPIRO, Karen et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food and Waterborne Parasitology, v. 15, p. e00049, 2019. SHEN, Chen et al. Mtor-and sgk-mediated connexin 43 expression participates in lipopolysaccharide-stimulated macrophage migration through the inos/src/fak axis. The Journal of Immunology, v. 201, n. 10, p. 2986-2997, 2018) 179 SHIMURA, Daisuke; SHAW, Robin M. GJA1-20k e a dinâmica mitocondrial. Fronteiras em Fisiologia , p. 563, 2022. SIBLEY, L.D. Invasion and intracellular survival by protozoan parasites. Department of Molecular Microbiology. v. 240, p 72–91, 2011. SINGH, H. L.; SHARMA, M.; VARSHNEY, A. K. Studies on coordination compounds of organotin (IV) with schiff bases of amino acids. Sythesis and Reactivity in Inorganic and Matel-Organic Chemistry, v. 30, n. 3, p. 445-456, 2000. Sohl G & Willecke K (2003). An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 10(4-6): 173-80. SOLDATI, Dominique; DUBREMETZ, Jean Francois; LEBRUN, Maryse. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. International journal for parasitology, v. 31, n. 12, p. 1293-1302, 2001. SOMPAYRAC, L.M. How the Immune System Works. Ed. Seventh, 2022. Sosinsky, GE & Nicholson BJ (2005) Structural organization of gap junction channels. Biochim Biophys Acta. 1711 (2): 99-125. Sosinsky, G (2000) Gap junction structure: new structures and new insights. In Gap Junctions, Peracchia C (ed), Academic Press, San Diego, pp. 1-22. Spray, DC & Burt, JM (1990) Structure-activity relations of the cardiac gap junction channel. Am J Physiol 258, 195-205 Spray, DC (1991) Transjunctional voltage dependence of gap junctions channels. In, Peracchia, C. (ed) Gating of gap junction channel (Boca Raton, FL: CRC Press), pp 97 STUTZMANN, Grace E.; MATTSON, Mark P. Endoplasmic reticulum Ca2+ handling in excitable cells in health and disease. Pharmacological reviews, v. 63, n. 3, p. 700-727, 2011. 180 TA, W.; CHAWLA, A.; POLLARD, J. Origins and hallmarks of macrophages: development, homeostasis, and disease. Nature, v. 496, p. 445-455, 2013. TA, Wynn; CHAWLA, A.; POLLARD, J. Origins and hallmarks of macrophages: development, homeostasis, and disease. Nature, v. 496, p. 445-455, 2013. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010; 140:805–820. TALABANI, H. et al. Fatores de ocorrência de toxoplasmose ocular. Uma crítica. Parasita, v. 17, n. 3, p. 177-182, 2010. TIBAYRENE, M., KJELLBERG, F., ARNAUD, J., OURY, B., BRENIE`RE, S. F., DARDE ́, M. L. & AYALA, F. J. Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proceeding of the National Academy of Sciences of United States of Amerrica. v.88, p. 5129-5133, 1991. TIKU, Varnesh; TAN, Man-Wah; DIKIC, Ivan. Mitochondrial functions in infection and immunity. Trends in cell biology, v. 30, n. 4, p. 263-275, 2020. TITTARELLI, Andrés et al. Connexin-mediated signaling at the immunological synapse. International journal of molecular sciences, v. 21, n. 10, p. 3736, 2020. Unger VM, Kumar NM, Gilula NB, Yeager M. (1999). Three-dimensional structure of a recombinant gap junction membrane channel. Science. 283 (5405):1176-80. Unkeless JC, Kaplan G, Plutner H & Cohn ZA (1979). Fc-receptor variants of a mouse macrophage cell line. Proc Natl Acad Sci U S A. 76(3): 1400-4 Unwin PN & Zampighi G. (1980) Structure of the junction between communicating cells. Nature 283, 545-49 Van Veen T.A, van Rijen H.V & Jongsma H.J. (2000) Electrical conductance of mouse connexin45 gap junction channels is modulated by phosphorylation. Cardiovasc Res 46, 496-510 181 Veenstra, R.D. (2000) Ion permeation through connexin gap junction channels: effects on conductance and selectivity. Gap junctions: Molecular basis of Cell Communication in Health and Disease (Edited by Camillo Peracchia) – Current Topics in Membranes 49, Chapter 5, 95-130 VENUGOPAL, Kannan et al. Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLoS Pathogens, v. 16, n. 5, p. e1008106, 2020 Wang, XG & Peracchia, C. (1998) Chemical gating of heteromeric heterotypic gap junction channel. J. Membr. Biol 162, 169-170 Weidmann, S. (1972) The electrical constants of Purkinje Fibers. J. Physiol. (London) 118, 348 Weiner HL, Frenkel D. Immunology and immunotherapy of Alzheimer's disease. Nature Rev. Immunol. 2006; 6:404–416. Werner, R; Levine, E; Rabadan-Diehl, C & Dahl, G. (1989) Formation of hybrid cell-cell channels. Proc Natl Acad Sci USA 86, 5380 White T.W & Bruzzone R (2000). Intercellular communication in the eye: clarifying the need for connexin diversity. Brain Res Brain Res Rev. 32(1): 130- 7. White, T.H (1985) Acidification-resistent junctional conductance between pairs of ventricular myocytes dissociated from adult rat. Am J Phys 149, C447 White, T.W & Paul, D.L (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61, 283-310 WIEDEMANN, Nils; PFANNER, Nikolaus. Mitochondrial machineries for protein import and assembly. Annual review of biochemistry, v. 86, p. 685-714, 2017. Willecke, K; Eiberger, J; Degen, D; Eckardt, A.; Romunaldi, M; Gueldenagel, UD & Sohl, G. (2001) Structural and functional diversity 182 of connexin genes in the mouse and human genome. V.2001 15/11/2001. WOLF, Abner; COWEN, David; PAIGE, Beryl H. Fetal encephalomyelitis: prenatal inception of infantile toxoplasmosis. Science, v. 93, n. 2423, p. 548-549, 1941. Wong, C.W. et al. (2004) Connexins in leukocytes: shuttling messages? Cardiovasc. Res. 62, 357–367 22 Xia Y & Nawy S (2003). The gap junction blockers carbenoxolone and 18beta- glycyrrhetinic acid antagonize cone-driven light responses in the mouse retina. Vis Neurosci. 20(4): 429-35. YAMAMOTO, Masahiro et al. ATF6β is a host cellular target of the Toxoplasma gondii virulence factor ROP18. Journal of Experimental Medicine, v. 208, n. 7, p. 1533-1546, 2011. YANG, W. et al. To TRIM the Immunity: From Innate to Adaptive Immunity. Frontiers in immunology. v. 11, n. 02157, 2020. Yeager, M; Unger, VM & Falk, MM. (1998) Synthesis, assembly and structure of gap junction intercellular channels [published erratum appears in Curr Opin Struct Biol 1998 Dec; 8 (6): 810-11] Curr Opin Struct Biol 8, 517-24 ZHANG, Ruize et al. Hijacking of host mitochondria by Toxoplasma gondii and SARS-CoV-2. Trends in Parasitology, 2022. ZUMERLE, Sara et al. Intercellular calcium signaling induced by ATP potentiates macrophage phagocytosis. Cell reports, v. 27, n. 1, p. 1-10. e4, 2019.reponame:Repositório Institucional da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJinfo:eu-repo/semantics/openAccessORIGINAL2023 - Gabriella Oliveira Alves Moreira de Carvalho.pdf2023 - Gabriella Oliveira Alves Moreira de Carvalho.pdfapplication/pdf7232473https://rima.ufrrj.br/jspui/bitstream/20.500.14407/19931/1/2023%20-%20Gabriella%20Oliveira%20Alves%20Moreira%20de%20Carvalho.pdfc01933a71b581afffec0a5a4d7a51643MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://rima.ufrrj.br/jspui/bitstream/20.500.14407/19931/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXT2023 - Gabriella Oliveira Alves Moreira de Carvalho.pdf.txt2023 - Gabriella Oliveira Alves Moreira de Carvalho.pdf.txtExtracted texttext/plain323003https://rima.ufrrj.br/jspui/bitstream/20.500.14407/19931/3/2023%20-%20Gabriella%20Oliveira%20Alves%20Moreira%20de%20Carvalho.pdf.txtc32b296dd1e76dccfbe97ca68b1e6e8fMD53THUMBNAIL2023 - Gabriella Oliveira Alves Moreira de Carvalho.pdf.jpg2023 - Gabriella Oliveira Alves Moreira de Carvalho.pdf.jpgGenerated Thumbnailimage/jpeg1320https://rima.ufrrj.br/jspui/bitstream/20.500.14407/19931/4/2023%20-%20Gabriella%20Oliveira%20Alves%20Moreira%20de%20Carvalho.pdf.jpg9688a556f58ce9bb00a10f9d555204e0MD5420.500.14407/199312025-01-30 02:04:02.825oai:rima.ufrrj.br:20.500.14407/19931Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.bropendoar:2025-01-30T05:04:02Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.pt_BR.fl_str_mv Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii
title Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii
spellingShingle Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii
Carvalho, Gabriella Oliveira Alves Moreira de
Fisiologia
Junção Comunicante
Macrófagos
Toxoplasma gondii
Communicating Junction
Macrophages
title_short Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii
title_full Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii
title_fullStr Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii
title_full_unstemmed Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii
title_sort Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii
author Carvalho, Gabriella Oliveira Alves Moreira de
author_facet Carvalho, Gabriella Oliveira Alves Moreira de
author_role author
dc.contributor.author.fl_str_mv Carvalho, Gabriella Oliveira Alves Moreira de
dc.contributor.advisor1.fl_str_mv Fortes, Fabio da Silva de Azevedo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8632870958098126
dc.contributor.referee1.fl_str_mv Fortes, Fabio da Silva de Azevedo
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8632870958098126
dc.contributor.referee2.fl_str_mv Goldenberg, Regina Coeli dos Santos
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-0886-9603
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0433763336350310
dc.contributor.referee3.fl_str_mv Seabra, Sergio Henrique
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0002-2800-931X
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/6301573844997242
dc.contributor.referee4.fl_str_mv Cortes, Wellington da Silva
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/1305510562756172
dc.contributor.referee5.fl_str_mv Marinho, Bruno Guimarães
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/2685794388394484
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2454737860710756
contributor_str_mv Fortes, Fabio da Silva de Azevedo
Fortes, Fabio da Silva de Azevedo
Goldenberg, Regina Coeli dos Santos
Seabra, Sergio Henrique
Cortes, Wellington da Silva
Marinho, Bruno Guimarães
dc.subject.cnpq.fl_str_mv Fisiologia
topic Fisiologia
Junção Comunicante
Macrófagos
Toxoplasma gondii
Communicating Junction
Macrophages
dc.subject.por.fl_str_mv Junção Comunicante
Macrófagos
Toxoplasma gondii
Communicating Junction
Macrophages
description Toxoplasma gondii (T. gondii) é o agente causador da toxoplasmose. Este protozoário possui a característica de ser intracelular obrigatório e ter alta prevalência em todo o mundo, em que se acredita ter infectado um terço da população mundial, causando grande morbidade e mortalidade. Dada à complexidade desta doença, diversas pesquisas têm se dedicado ao estudo de estruturas que estejam associadas às doenças parasitárias. Dentre estas estruturas, estão as Junções Comunicantes que são responsáveis pela troca de íons e pequenos mensageiros que mantém a homeostase tecidual. Estes canais transmembranares exercem um importante papel na comunicação intercelular em diferentes tecidos, pois permitem a comunicação em diferentes tipos celulares, incluindo os macrófagos. Com isto, a caracterização morfológica e funcional das junções comunicantes em macrófagos, e em particular formada pela conexina 43 tem sido alvo de estudo de diversos grupos, mas seus mecanismos regulatórios ainda merecem esclarecimentos, principalmente diante de alterações patológicas, como nos processos infecto-inflamatórios causados pelo T. gondii. Diante disto, o objetivo principal deste estudo foi avaliar a modulação das junções comunicantes na linhagem macrofágica J774-G8, após a infecção com o parasito Toxoplasma gondii e a posterior ativação com fatores pró-imuno inflamatórios. Como metodologia, foi utilizada: (1) Cultura de células J774-G8; (3) Infecção da cultura pelo do T. gondii cepa RH; (4) Tratamento com os fatores pró-imuno inflamatórios individuais e conjugados (IFN-γ, TNF-α, IFN-γ + TNF-α); (5) Ensaios imunoeletroforéticos (Western Blot); e (4) Ensaios de imunofluorescência e análise por microscopia confocal. Os resultados gerais achados foram: (1) A melhora no perfil morfológico das culturas de células J774-G8 infectadas com T. gondii tratadas com os fatores pró-imuno- inflamatórios; (2) O aumento da expressão proteica da Cx43 em células J774- G8 infectadas após o tratamento com os fatores imunes pró-inflamatórios, por 24 e 48 horas; (3) A ativação celular estimulada pelo tratamento com fatores conjugados; (4) Os danos no citoesqueleto celular causados pela infecção foram irreversíveis, mesmo após o tratamento com os fatores pró-imuno inflamatórios em células infectadas; (5) O dano ao citoesqueleto impediu o transporte e o ancoramento da Cx43 na membrana plasmática, porém os fatores proveram um aumento dos níveis citoplasmáticos da Cx43. Com isto foi possível concluir que: a infecção com o T. gondii causa danos irreversíveis nas células macrofágicas, porém o tratamento com fatores pró-imuno inflamatórios estimula a produção da Cx43, que mesmo não conseguindo se inserir na membrana plasmática em células infectadas por conta dos danos no citoesqueleto, pode exercer papéis importantes no processo de manutenção da estrutura celular infectada.
publishDate 2023
dc.date.issued.fl_str_mv 2023-04-24
dc.date.accessioned.fl_str_mv 2025-01-29T15:35:49Z
dc.date.available.fl_str_mv 2025-01-29T15:35:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARVALHO, Gabriella Oliveira Alves Moreira de. Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii. 2023. 188 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/19931
identifier_str_mv CARVALHO, Gabriella Oliveira Alves Moreira de. Comunicação juncional em macrófagos no processo infecto inflamatório in vitro com toxoplasma gondii. 2023. 188 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/19931
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv ABBAS, A.K.; LICHTMAN, A.H., PILLAI, S. Imunologia Celular e Molecular - Rio de Janeiro: Elsevier, 7a edição, 2011. ADEREM, A.; UNDERHILL, D.M. Mechanisms of phagocytosis in macrophages. Ann Rev of Immunol v. 17, p. 593 – 623, 1999. ALBERTS B., et al. Molecular Biology of the Cell. New York: Garland Publishing, 3a ed., 1994. ALVES, L.A. et al. Gap junction modulation by extracellular signaling molecules: the thymus model. Braz. J. Med. Biol. Res. v. 33, p. 457–465, 2000. ATTIAS, M. et al. The life-cycle of Toxoplasma gondii reviewed using animations. Parasites & vectors, v. 13, p. 1-13, 2020. AUGUSTO, L. et al.; Toxoplasma gondii co-opts the unfolded protein response to enhance migration and dissemination of infected host cells. Mbio, v. 11, n. 4, p. e00915-20, 2020. BAHIA-OLIVEIRA, Lílian Maria Garcia et al. Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerging infectious diseases, v. 9, n. 1, p. 55, 2003. BALKWILL, F.R.; BURKE, F. The cytokine network. Immunol. v. 10, p. 299–304, 1989. BENNET, M.V.L. et al. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. v. 26, p. 610–617, 2003. BENNETT P.B. , VALENZUELA C , CHEN LQ , KALLEN RG , On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III-IV interdomain. Circ Res. v. 77, n. 3, p. 584- 592, 1995. BENNETT, M.V. et al.; Gap junctions: new tools, new answers, new questions. Neuron v. 6, p. 305-320, 1991. 159 BEYER, E.; STEINBERG TH. Connexin, gap-junction proteins, and ATP-induced pores in macrophages. Progr Cell Res v. 3, p. 71-74, 1993. BEYER, E.C.; STEINBERG, T.H. Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J. Biol. Chem. v. 266, n. 7971, 1991. BEYER, E; STEINBERG TH. Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J. Biol. Chem. v.266, p. 7971-7974, 1991. BOEHM, U. et al. Cellular responses to interferon-gamma. Ann Rev of Immun v. 15, p. 749 – 795, 1997. BOENGLER, K. et al. Connexin 43 in Mitochondria: What Do We Really Know About Its Function?. Frontiers in Physiology, p. 1188, 2022. BOENGLER, K. et al. Connexin 43 in Mitochondria: What Do We Really Know About Its Function?. Frontiers in Physiology, p. 1188, 2022. BOOTHROYD, J. C.; DUBREMETZ, J.F. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nature Reviews Microbiology, v. 6, n. 1, p. 79-88, 2008. Bradford, M.M. Rapid and sensitive method for the quantitation of microgran quatities of protein utilizing the principle of protein-dye binding. Anal Biochem. v. 72, p. 248-54, 1976. BRADLEY, P.J.; SIBLEY, L. D. Rhoptries: an arsenal of secreted virulence factors. Current opinion in microbiology, v. 10, n. 6, p. 582-587, 2007. BRITZ-CUNNINGHAN, S.H.; Mutations of the connexin43 gap junction gene in patients with heart malformations and defects of laterality. New Engl J Med v. 332, p.1323-29, 1995. BRUZZONE, R; WHITE, TW; GOODENOUGH, DA. The cellular internet: on- line with connexins. BioEssays v.18, n.9, p. 709-718, 1996. 160 BURT J.M.; SPRAY D.C.; Inotropic agents modulate gap junctional conductance between cardiac myocytes. Am J Physiol v.254, p.1206-1210, 1988. CAFFARO, C.E.; BOOTHROYD, J.C. Evidence for host cells as the major contributor of lipids in the intravacuolar network of Toxoplasma-infected cells. Eukaryotic Cell, v. 10, n. 8, p. 1095-1099, 2011. CAMPOS DE CARVALHO A.C., et al. Gap junction distribution is altered between cardiac myocytes infected with Trypanosoma cruzi. Circ. Res. v.70, p. 733–742, 1992. CAMPOS DE CARVALHO A.C., et al. Gap Junction disappearance in astrocytes and leptomeningeal cells as a consequence of protozoan infection. Brain Res. v.20, n.790 p. 304-314, 1998. CARRERAS-SUREDA, A.; PIHAN, P.; Hetz, C. Sinalização de cálcio no retículo endoplasmático: ajuste fino das respostas ao estresse. Cell Calcium , v.70 , p. 24-31, 2018. CARRUTHERS, V. B.; SIBLEY, L. D. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. European journal of cell biology, v. 73, n. 2, p. 114-123, 1997. CASEY B.; BALLABIO A. Connexin 43 mutations in sporadic and familial defects of laterality. N Engl J Med. v. 333 n. 14 p. 941-942, 1995. CDC. Toxoplasmose - epidemiologia e fatores de risco. Atlanta: Centros de Controle e Prevenção de Doenças; 2018. Disponível em https://www.cdc.gov/parasites/toxoplasmosis/epi.html. Acessado em 08 de abril de 2023 as 20:05h Chanson, M. (2005) Gap junctional communication in tissue inflammation and repair. Biochim. Biophys. Acta 1711, 197–207 161 CHARRON, Audra J.; SIBLEY, L. David. Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. Journal of cell science, v. 115, n. 15, p. 3049-3059, 2002. CHEN, G. et al. NOD-like receptors: role in innate immunity and inflammatory disease. Annual review of pathology. v. 4, p. 365-98, 2009. CHEN, G. Y.; NUÑEZ, G. Sterile inflammation: sensing and reacting to damage. Nature Reviews Immunology, v. 10, p. 826- 837, 2010 Contreras, J.E.1 , Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res. Brain Res. Rev. 47, 290–303 Cotran, RS.; Kumar, V.; Robbins, S. Robbins Pathologic Basis of Disease. Schoen, FJ., editor. W. B. Saunders Company; Philadelphia: 1994. p. 1255-1259. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420:860–867. CROOKE, S.N. et al. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Experimental gerontology. v. 124, n. 110632, 2019. CUZZOCREA, S. Shock, inflammation and PARP. Pharmacological Research, v. 52, p. 72-82, 2005. Das Sarma J, Meyer RA, Wang F, Abraham V, Lo CW, Koval M (2001). Multimeric connexin interactions prior to the trans-Golgi network. J Cell Sci. 114 (Pt 22):4013-24. Davis, D.M. (2007) Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol. 7, 238–243 De Maio, A. et al. (2002) Gap junctions, homeostasis, and injury. J. Cell. Physiol. 191, 269–282 162 DE MENDONÇA, João Silva. Princípios gerais de terapêutica. de Souza W, Belfort Jr R. Toxoplasmose e Toxoplasma gondii. Rio de Janeiro: Fiocruz, p. 209-14, 2014. DE SOUSA, W., MARTINS-DUARTE, E. S., LEMGRUBER, L., ATTIAS, M., VOMMARO, R. C. Structural organization of the tachyzoite of Toxoplasma gondii. Scientia Medica, v. 20, n. 1, p. 131-143, 2010. DE SOUZA BREDA, Cristiane Naffah et al. Mitochondria as central hub of the immune system. Redox biology, v. 26, p. 101255, 2019. Dean, C., Pichersky, E., and Dunsmuir, P. (1989). Structure, evolution and regulation of rbcSgenes in higher plants. Annu. Rev. Plant Physiol. 40, 415-439. Delmar, M; Stergiopoulos, K; Homma, N; Calero G; Morley, G; Ek-Victorin, JF & Taffet, SM. (2000) A molecular model for the chemical regulation of connexin43 channels: The “Ball-and-Chain) Hypothesis. Gap junctions: Molecular basis of cell communication in health and disease (Edited by Camillo Peracchia) – Current Topics in Membranes 49, Chapter 11, 223-248 Dermietzel, R & Spray, DC. (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci. 16, 186 –192 DEROUIN, F. et al. Experimental models of toxoplasmosis. Pharmacological applications. Parasite (Paris, France), v. 2, n. 3, p. 243-256, 1995. DESMONTS, G. et al. ETUDE EPIDEMIOLOGIQUE SUR LA TOXOPLASMOSE- DE LINFLUENCE DE LA CUISSON DES VIANDES DE BOUCHERIE SUR LA FREQUENCE DE LINFECTION HUMAINE. REVUE FRANCAISE D ETUDES CLINIQUES ET BIOLOGIQUES, v. 10, n. 9, p. 952-&, 1965. Dhein, S. (1998). Gap junction channels in the cardiovascular system: pharmacological and physiological modulation. Trends Pharmacol. Sci. 19, 229-241. 163 DUARTE, A.G.P. et al. Anti-toxoplasma gondii effect of metalocomplex compounds N0414 and N5814. Brazilian Journal of Development, v. 7, n. 2, p. 16541-16555, 2021. Dubey JP., Frenkel JK. Feline toxoplasmosis from acutely infected mice and the development of Toxoplasma cysts. Journal of Protozoology ,23, 4, 537, 1976. DUBEY, J. P. Advances in the life cycle of Toxoplasma gondii. International journal for parasitology, v. 28, n. 7, p. 1019-1024, 1998. DUBEY, J. P. Long-term persistence of Toxoplasma gondii in tissues of pigs inoculated with T gondii oocysts and effect of freezing on viability of tissue cysts in pork. American journal of veterinary research, v. 49, n. 6, p. 910-913, 1988. DUBEY, J. P. The History of Toxoplasma gondii—The First 100 Years. Journal of Eukaryotic Microbiology, v. 6, n. 55, p. 467–475, 2008. DUBEY, J. P., LAGO, E. G., GENNARI, S.M., SU, C. and JONES, J. L. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology, p. 1 of 50, 2012 DUBEY, J. P.; FRENKEL, J. K. Cyst‐induced toxoplasmosis in cats. The Journal of protozoology, v. 19, n. 1, p. 155-177, 1972. DUBEY, J. P.; HILL, D. Toxoplasma gondii: Transmission and Prevention. Clin Microbiol Rev, v. 8, n. 10, p. 634-640, 2002. DUBEY, J. P.; LINDSAY, D. S.; SPEER, C. A. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Review, v.11, n.2, p.267-99, 1998. DUBEY, J. P.; LINDSAY, D. S.; SPEER, CA106833. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical microbiology reviews, v. 11, n. 2, p. 267-299, 1998. DUNCANSON, Phil et al. High levels of congenital transmission of Toxoplasma gondii in a commercial sheep flock. International journal for parasitology, v. 31, n. 14, p. 1699-1703, 2001. 164 Elbez-Rubinstein A, Ajzenberg D, Darde ML, Cohen R, Dumetre A, Yera H, Gondon E, Janaud JC, Thulliez P. Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. J Infect Dis. 2009;199:280–285. Elmore SA, Jones JL, Conrad PA, Patton S, Lindsay DS, Dubey JP. Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends Parasitol 2010; 26(4): 190-196. ENGLISH, Elizabeth D.; BOYLE, Jon P. Impact of engineered expression of mitochondrial association factor 1b on Toxoplasma gondii infection and the host response in a mouse model. Msphere, v. 3, n. 5, p. e00471-18, 2018. Eugenin EA, Branes MC, Berman JW & Saez JC (2003). TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/ macrophages that enhance physiological responses. J Immunol. 170(3): 1320-8. Eugenin, E.A; Eckardt, D; Theis, M; Willecke, K; Bennett, MVL & Saéz, JC. (2001) Microglia at brain stab wounds express connexin and in vitro form functional gap junctions after treatment with interferon-γ and tumor necrosis factor-α. Proc Natl Acad Sci USA 98, 4190-4195 Evans WH & Martin PE (2002) Gap junctions: structure and function (Review). Mol Membr Biol. 19(2):121-36. FERGUSON, D.J.P.; BIRCH-ANDERSEN, J. C.S.; HUTCHISON W. M. Observations on the ultrastructure of the sporocyst and the initiation of sporozoite formation in Toxoplasma gondii. Acta Pathol Microbiol. v. 86, p.165–167, 1978. FERGUSON, David JP. Toxoplasma gondii and sex: essential or optional extra?. Trends in parasitology, v. 18, n. 8, p. 351-355, 2002. FERGUSON, David JP. Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore. Memorias do Instituto Oswaldo Cruz, v. 104, p. 133-148, 2009. 165 FERREIRA, Flávia Batista et al. Serological evidence of Toxoplasma gondii infection in Melanosuchus niger (Spix, 1825) and Caimam crocodilus (Linnaeus, 1758). International Journal for Parasitology: Parasites and Wildlife, v. 12, p. 42-45, 2020. FERREIRA-DA-SILVA, M. F.; BARBOSA, H. S.; GROSS U.; LÜDER, C. G. Stress-related and spontaneous stage differentiation of Toxoplasma gondii. Molecular Biosystems. n.4, p.824-834,2008 Flagg-Newton, J., Simponson, I. & Loewenstein, W.R. (1979). Permeability of the cell-to-cell membrane channels in mammalian cell junctions. Science 205, 404. Fortes, F.S.A., Pecora IL, Persechini PM, Hurtado S, Costa V, Coutinho-Silva R, Braga MB, Silva-Filho FC, Bisaggio RC, De Farias FP, Scemes E, De Carvalho AC & Goldenberg RC (2004). Modulation of intercellular communication in macrophages: possible interactions between Gap junctions and P2 receptors. J Cell Sci. 117(Pt 20): 4717-26. Friedl, P. et al. (2005) Tuning immune responses: diversity and adaptation of the immunological synapse. Nat. Rev. Immunol. 5, 532–545 Fujimoto, J., Sawamoto, K., Okabe, M., Okano, H., Yamamoto, T. (1997). Molecular cloning and characterization of focal adhesion kinase of Drosophila melanogaster. Mol. Biol. Cell 8(Suppl.): 399a. FUKUMOTO, Junpei et al. Rhoptry kinase protein 39 (ROP39) is a novel factor that recruits host mitochondria to the parasitophorous vacuole of Toxoplasma gondii. Biology open, v. 10, n. 9, p. bio058988, 2021. Furshpan, E.J. & Potter, D.D. (1959). Transmission at the giant motor synapses of the crayfish. J. Physiol. 154, 289. Gaietta, G; Deerinck, TJ; Adams, SR; Bouwer, J; Tour, O; Laird, DW; Sosinsky, GE; Tsien, RY & Ellisman, MH. (2002) Science 96, 503-507 166 Galluzzi, L., Diotallevi, A., & Magnani, M. (2017). Endoplasmic reticulum stress and unfolded protein response in infection by intracellular parasites. Future science OA, 3(3), FSO198. Giepmans BN1 . Gap junctions and connexin-interacting proteins. Cardiovasc Res. 2004 May 1;62(2):233-45. GILBERT, Ruth E. et al. Ocular sequelae of congenital toxoplasmosis in Brazil compared with Europe. PLoS Neglected Tropical Diseases, v. 2, n. 8, p. e277, 2008. Gilula, N.B., Reeves, O.R. & Steinbach, A. (1972). Metabolic coupling, ionic coupling and cell contacts. Nature 235, 262. Gimlich, RL; Kumar, NM & Gilula, NB (1990). Differential regulation of the levels of three gap junction mRNAs in Xenopus embryos. J. Cell. Biol. 110, 597-605. GOMES, Ligia C.; BENEDETTO, Giulietta Di; SCORRANO, Luca. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature cell biology, v. 13, n. 5, p. 589-598, 2011. Gong, X.; Li, E; Klier, G; Huang, Q; Wu, Y; Lei, H; Kumar, NM; Horwitz, J & Gilula, NB. (1997) Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91, 833-43 Goodenough D.A. and Paul D.L. Gap Junctions; Cold Spring Harb Perspect Biol. 2009 Jul; 1(1): a002576. Goodenough, D. A., J. A. Goliger, and D. L. Paul. 1996. Connexins, connexons, and intercellular communication. Annu. Rev. Biochem. 65:475. Goodenough, DA (1992) The crystalline lens: a system networked by gap junction intercellular communication. Sem Cell Biol 49-58 GORDON, S. The macrophage: past, present and future. European journal of immunology, v. 37, n. S1, p. S9-S17, 2007. 167 GRAINDORGE, Arnault et al. The conoid associated motor MyoH is indispensable for Toxoplasma gondii entry and exit from host cells. PLoS Pathogens, v. 12, n. 1, p. e1005388, 2016. Green, CR & Severs, NJ (1993). Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease. Histochemistry 99 105-120. Gros, DB; Nicholson, BJ & Revel, JP (1983). Comparative analysis of gap junction protein from rat heart and liver: is there a tissue specificity of gap junctions? Cell 35, 539. GUIMARÃES, E. V.; DE CARVALHO, L.; BARBOSA, H. S. Primary culture of skeletal muscle cells as a model for studies of Toxoplasma gondii cystogenesis. International Journal for Parasitology, v.94, p.72-83, 2008. HAMMEL, J.H et al. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annual review of biomedical engineering. v. 23 p. 461-491, 2021. Handel, A.; Yates, A.; Pilyugin, S.S.; Antia, R.; Gap junction- mediated antigen transport in immune responses. Trends Immunol. 2007 Nov; 28 (11): 463-6. Epub 2007 Oct 24. Hansson and Skiöldebrand. Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation. Journal of Inflammation (2015) Hehl, A.B.; Basso, W.U; Lippuner, C.; Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genomics. V.16, n66, p.1-16, 2015. Herve, JC (2005). The Connexins. Biochim Biophys Acta. 1711, 97 – 98. Herve, JC; Bourmeyster N & Sarrouilhe D (2004). Diversity in protein–protein interactions of connexins: emerging roles. Biochim Biophys Acta.1662 (1–2), 22– 41 168 Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature reviews Molecular cell biology, 13(2), 89- 102. HETZ, Claudio; ZHANG, Kezhong; KAUFMAN, Randal J. Mechanisms, regulation and functions of the unfolded protein response. Nature reviews Molecular cell biology, v. 21, n. 8, p. 421-438, 2020. Hide, G.; Role of vertical transmission of Toxoplasma gondii in prevalence of infection - EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2016 VOL. 14, NO. 3, 335–344 HILL, D. AND DUBEY, J. P. Oxoplasma gondii: transmission, diagnosis and prevention. Europan Society of Clinical Microbiology and Infectius diseases. v. 8, p. 634-640, 2002 HOFF, Eleanor F.; CARRUTHERS, Vern B. Is Toxoplasma egress the first step in invasion?. Trends in parasitology, v. 18, n. 6, p. 251-255, 2002. HORN JR, Adolfo et al. Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells. Journal of inorganic biochemistry, v. 128, p. 38-47, 2013. HU, Ke et al. Cytoskeletal components of an invasion machine—the apical complex of Toxoplasma gondii. PLoS pathogens, v. 2, n. 2, p. e13, 2006. inducible nitric oxide synthase degradation by the proteasome pathway. Parasitology International 63 (2014) 659–663. JACOBS, Leon; REMINGTON, Jack S.; MELTON, Marjorie L. The resistance of the encysted form of Toxoplasma gondii. The Journal of parasitology, v. 46, n. 1, p. 11-21, 1960. Jawetz, E; Melnick, JL; Adelberg, EA; Brooks, GF; Butel, JS & Morse, SA. (1995) Microbiologia Médica - Ed. Guanabara Koogan, 20a edição, RJ 169 John SA, Revel JP (1991). Connexon integrity is maintained by non-covalent bonds: intramolecular disulfide bonds link the extracellular domains in rat connexin-43. Biochem Biophys Res Commun. 178(3):1312-8 JONES, J. L.; DUBEY, J. P. Waterborne toxoplasmosis–recent developments. Experimental parasitology, v. 124, n. 1, p. 10-25, 2010. Jones, J.L.; Dargelas, V; Roberts , J.; Press, C.; Remington, J. S.; Montoya, J. G., 2009, Risk Factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 Jongsma, HJ; Wilders, R; Takens-Kwak, BR & Rook, MB. (1993) Gap junctions: Progress in Cell Research 3, 187-192 JOYCE, Bradley R. et al. The unfolded protein response in the protozoan parasite Toxoplasma gondii features translational and transcriptional control. Eukaryotic cell, v. 12, n. 7, p. 979-989, 2013. Junqueira, LC & Carneiro, J. (1998) Histologia Básica. Ed. Guanabara Koogan, 8a edição, RJ KAFSACK, Björn FC; CARRUTHERS, Vern B. Apicomplexan perforin-like proteins. Communicative & integrative biology, v. 3, n. 1, p. 18-23, 2010. KALANI, Hamed et al. Comparison of eight cell-free media for maintenance of Toxoplasma gondii tachyzoites. Iranian journal of parasitology, v. 11, n. 1, p. 104, 2016. Kane, A.B. & Bols, N.C. (1980) A study of metabolic cooperation with rat peritoneal macrophages. J. cell. Physiol. 102, 385-393. Kane, AB & Bols, NC. (1980) A study of metabolic cooperation with rat peritoneal macrophages. J. Cell Physiol 102, 385-393 KELLERMANN, Malte; SCHARTE, Felix; HENSEL, Michael. Manipulation of host cell organelles by intracellular pathogens. International Journal of Molecular Sciences, v. 22, n. 12, p. 6484, 2021. 170 KIM, Ji Yeon et al. Interaction between parasitophorous vacuolar membrane- associated GRA3 and calcium modulating ligand of host cell endoplasmic reticulum in the parasitism of Toxoplasma gondii. The Korean journal of parasitology, v. 46, n. 4, p. 209, 2008. Koval, .;Molina, SA.; Burt, JM. Mix and match: Investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett. 2014 ; 588(8): 1193–1204 Kumar, NM & Gilula, NB (1996). The gap junction communication channel. Cell 84, 381-388. Kwak B.R, Hermans M.M, De Jonge HR, Lohmann SM, Jongsma HJ & Chanson M. (1995) Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 6, 1707-19 Lago, E. G., Neto, E. C., Melamed, J., Rucks, A. P., Presotto, C., Coelho, J. C., ... & Fiori, R. M. (2007). Congenital toxoplasmosis: late pregnancy infections detected by neonatal screening and maternal serological testing at delivery. Paediatric and perinatal epidemiology, 21(6), 525-531. Laird DW, Puranam KL, Revel JP (1991) Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1): 67–72. LAIRD, D.W. Life cycle of connexins in health and disease. Biochem. J. (2006) 394, 527–543 LAIRD, Dale W.; LAMPE, Paul D. Cellular mechanisms of connexin-based inherited diseases. Trends in Cell Biology, v. 32, n. 1, p. 58-69, 2022 LALIBERTE, Julie; CARRUTHERS, Vernon B. Host cell manipulation by the human pathogen Toxoplasma gondii. Cellular and molecular life sciences, v. 65, p. 1900-1915, 2008. Langston PK, Shibata M, Horng T. Metabolism Supports Macrophage Activation. Front Immunol. 2017 Jan 31;8:61. 171 Levine ND, Corliss JO, Cox FE, Deroux G, Grain J, Honigberg BM, Leedale GF, Loeblich AR 3rd, Lom J, Lynn D, Merinfeld EG, Page FC, Poljansky G, Sprague V, Vavra J, Wallace FG. A newly revised classification of the protozoa. J Protozool. 1980 Feb;27(1):37-58. Levy, JA; Weiss, RM; Dirksen, ER & Rosen, MR. (1976) Possible communication between murine macrophages oriented in linear chains in tissue culture. Exp Cell Res 103, 375-385 Lilly, E.; Sellitto, C.; Milstone, LM.; White, TW. Connexin channels in congenital skin disorders. 2015. Seminars in Cell and Developmental Biology LIMA, Tatiane S.; LODOEN, Melissa B. Mechanisms of human innate immune evasion by Toxoplasma gondii. Frontiers in cellular and infection microbiology, v. 9, p. 103, 2019. LIMA, Tatiane S.; LODOEN, Melissa B. Mechanisms of human innate immune evasion by Toxoplasma gondii. Frontiers in cellular and infection microbiology, v. 9, p. 103, 2019. Loewenstein, WR. (1966) Permeability of membrane junctions. Ann N York Acad Sci. 137, 441. Loewenstein, WR. (1981) Gap junctions. Physiol. Rev. 61, 829-913 LOPES-MORI, Fabiana Maria Ruiz et al. Programas de controle da toxoplasmose congênita. Revista da Associação Médica Brasileira, v. 57, n. 5, p. 594-599, 2011. LOURIDO, Sebastian. Toxoplasma gondii. PARASITE OF THE MONTH, VOLUME 35, ISSUE 11, P944-945, NOVEMBER 2019. LOVETT, Jennie L. et al. Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from inositol 1, 4, 5-triphosphate (IP3)/ryanodine- sensitive stores. Journal of Biological Chemistry, v. 277, n. 29, p. 25870- 25876, 2002 172 LÜDERA, C. G. K.; BOHNEA, W.; SOLDATI, D. Toxoplasmosis: a persisting challenge. Trends Parasitol. v.17, P. 460-3, 2001. LYONS, Russell E.; MCLEOD, Rima; ROBERTS, Craig W. Toxoplasma gondii tachyzoite–bradyzoite interconversion. Trends in parasitology, v. 18, n. 5, p. 198-201, 2002. MacMicking, J; Xie, Q-X & Nathan, CF. (1997) Nitric oxide and macrophage function. Annual Review of Immunology 15, 323 – 350 MadhumitaJagannathan-Bogdan and Leonard I. Zon .Hematopoiesis. Development. 2013 Jun 15; 140(12): 2463–2467. Mahmoudi, S., Mamishi, S., Suo, X., Keshavarz, H., Early detection of Toxoplasma gondii infection by using a interferon gamma release assay: A review, Experimental Parasitology (2017), Makowski, L., Caspar, D.L.D., Phillips, W.C. & Goodenough, D.A. (1977). Gap junction structures. II. Analysis of X-ray diffraction data. J. Cell. Biol. 74, 629-645. MANN, Tara; BECKERS, Con. Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Molecular and biochemical parasitology, v. 115, n. 2, p. 257-268, 2001. Martin, CA; Homaidan, FR; Palaia,T; Burakoff, R & el-Sabban, ME. (1998) Gap junctional communication between murine macrophages and intestinal epithelial cell lines. Cell Adhes Commun 6, 437-49 MARTINON, Fabio et al. Toll-like receptor activation of XBP1 regulates innate immune responses in macrophages. Nature immunology, v. 11, n. 5, p. 411, 2010. MARTINS-DUARTE, Erica S. et al. In vitro activity of N-phenyl-1, 10- phenanthroline-2-amines against tachyzoites and bradyzoites of Toxoplasma gondii. Bioorganic & Medicinal Chemistry, v. 50, p. 116467, 2021. 173 MONDRAGON, RICARDO; FRIXIONE, EUGENIO. Ca2+‐dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology, v. 43, n. 2, p. 120-127, 1996. MONDRAGON, RICARDO; FRIXIONE, EUGENIO. Ca2+‐dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology, v. 43, n. 2, p. 120-127, 1996. MONDRAGON, RICARDO; FRIXIONE, EUGENIO. Ca2+‐dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology, v. 43, n. 2, p. 120-127, 1996. Montecino-Rodriguez, E. et al. (2000) Expression of connexin 43 (cx43) is critical for normal hematopoiesis. Blood 96, 917–924 MONTEIRO, V. G. et al. Morphological changes during conoid extrusion in Toxoplasma gondii tachyzoites treated with calcium ionophore. Journal of structural biology, v. 136, n. 3, p. 181-189, 2001. MOSSER, D.M.; EDWARDS, J.P. Exploring the full spectrum of macrophage activation. Nature reviews immunology, v. 8, n. 12, p. 958-969, 2008. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med. 1998; 157:1666–1680. MURPHY, K.; TRAVARES, P.; WALPORT, M. Imunobiologia de Janeway. São Paulo: Artmed, 7ed. 2010. MURRAY, P.J. Macrophage Polarization. Annual review of physiology v. 79, p. 541-566, 2017. MURRAY, Peter J.; WYNN, Thomas A. Protective and pathogenic functions of macrophage subsets. Nature reviews immunology, v. 11, n. 11, p. 723-737, 2011. Musil, L & Goodenough, DA. (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74, 1065-77. 174 NATH, M.; POKHARIA, S.; YADAV, R. Calix [4] arenes as Molecular Platforms in Magnetic Resonance Imagery. Coord. Chem. Rev, v. 215, p. 99-149, 2001. NICOLLE, Charles. Sur une infection a corps de Leishman (on organismes voisons) du gondi. CR Acad Sci, v. 147, p. 736, 1908. Nihei, O.K. et al. (2003) A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. Am. J. Physiol. Cell Physiol. 285, C1304–C1313 Noma A & Tsuboi N. (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guineapig. J Physiol 382 193-211. of sporozoite formation in Toxoplasma gondii. Acta Pathol. Microbiol. Oviedo-Orta, E. (2002) Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol. Int. 26, 253–263 Oviedo-Orta, E. and Evans, W.H. (2004) Gap junctions and connexinmediated communication in the immune system. Biochim. Biophys. Acta 1662, 102–112 Oviedo-Orta, E. et al. (2001) Immunoglobulin and cytokine expression in mixed lymphocyte cultures is reduced by disruption of gap junction intercellular communication. FASEB J. 15, 768–774 Padrão, J.C., Cabral, G.R. A.; Silva, M.F.S.; Seabra, S.H.; DaMatta, R. A. Toxoplasma gondii infection of activated J774-A1 macrophages causes PAREDES-SANTOS, Tatiana Christina; DE SOUZA, Wanderley; ATTIAS, Márcia. Dynamics and 3D organization of secretory organelles of Toxoplasma gondii. Journal of structural biology, v. 177, n. 2, p. 420-430, 2012. PARK, Jeongho; HUNTER, Christopher A. The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite immunology, v. 42, n. 7, p. e12712, 2020. 175 Paul, D (1986). Molecular cloning of cDNA for rat liver gap junction proteins. J. Cell Biol 103, 123-134. Peracchia, C. Chemical gating of gap junction channels Roles of calcium, pH and calmodulin, Biochimica et Biophysica Acta 1662 (2004) 61 – 80 PERNAS, Lena et al. Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids. Cell Metabolism, v. 27, n. 4, p. 886-897. e4, 2018. PERNAS, Lena et al. Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS biology, v. 12, n. 4, p. e1001845, 2014. PERNAS, Lena; SCORRANO, Luca. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annual review of physiology, v. 78, p. 505-531, 2016. Pinkerton, H. , and David W. . "Toxoplasma infection in man." Arch. Pathol. 30.1 (1940). Polacek, D; Lal, R; Volin, MV & Davies, PF (1993) Gap junctional communication between vascular cells. Am. J. Pathol. 142, 593-605 Polontchouck, L; Haefliger, JA; Ebelt, B; Schaefer, T; Stuhlmann, D; Mehlhorn, U; Kuhn-Regnier, F; De Vivie, ER & Dhein, S. (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J. Amer. Coll. Cardiol. 38, 883-891 PONCET, Anaïs F. et al. The UPR sensor IRE1α promotes dendritic cell responses to control Toxoplasma gondii infection. EMBO reports, v. 22, n. 3, p. e49617, 2021. PORTER S. B., SANDER, M. A. Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. The New England Journal of Medicine, n. 23, p. 16
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Fisiológicas
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Biológicas e Da Saúde
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Repositório Institucional da UFRRJ
collection Repositório Institucional da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/19931/1/2023%20-%20Gabriella%20Oliveira%20Alves%20Moreira%20de%20Carvalho.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/19931/2/license.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/19931/3/2023%20-%20Gabriella%20Oliveira%20Alves%20Moreira%20de%20Carvalho.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/19931/4/2023%20-%20Gabriella%20Oliveira%20Alves%20Moreira%20de%20Carvalho.pdf.jpg
bitstream.checksum.fl_str_mv c01933a71b581afffec0a5a4d7a51643
8a4605be74aa9ea9d79846c1fba20a33
c32b296dd1e76dccfbe97ca68b1e6e8f
9688a556f58ce9bb00a10f9d555204e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br
_version_ 1849138584376836096