Mathematical and computational modelling of magnetohydrodynamics

Detalhes bibliográficos
Autor(a) principal: Rocha, Gabriel Wendell Celestino
Data de Publicação: 2025
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFRN
dARK ID: ark:/41046/0013000017j4c
Texto Completo: https://repositorio.ufrn.br/handle/123456789/63393
Resumo: Astrophysical systems present significant challenges due to the vast range of phenomena and scales they encompass. Magnetohydrodynamic (MHD) models are particularly integral to the study of such systems, with applications spanning Stellar Astrophysics, such as solar wind and magnetoconvection, to Extragalactic Astrophysics, including modeling the interstellar medium. Numerical simulations play a crucial role in advancing our understanding of these complex systems by providing approximate predictions of their behavior under predefined conditions. However, the computational demands of MHD equations make it essential to achieve these simulations within realistic timeframes. To address this, most advanced MHD simulation codes are written in low-level programming languages, such as C, C++, and FORTRAN. While powerful, these languages are challenging to interpret, which steepens the learning curves for new users. Furthermore, existing simulation codes often require separate software for data visualization and analysis, adding complexity and delaying insights. This dissertation presents a Python-based code for astrophysical MHD simulations that addresses these limitations by offering an accessible and user-friendly alternative. The code integrates tools for real-time visualization and analysis, enabling users to monitor the evolution of their simulations as they run. To minimize wasted computational resources and user effort, the code includes automatic error-checking mechanisms to identify input parameters and initial conditions that could lead to numerical instabilities. The performance and accuracy of the code are validated through standard test problems, including the Brio-Wu shock tube, the Orszag-Tang vortex, and a MHD spherical blast wave. Detailed descriptions of the algorithms and methodologies implemented are provided, highlighting the potential of this tool to streamline MHD research.
id UFRN_c1a15baf74b3d543280381ca1c1e8d7d
oai_identifier_str oai:repositorio.ufrn.br:123456789/63393
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Mathematical and computational modelling of magnetohydrodynamicsMagnetohidrodinâmica (MHD)Métodos numéricosLimpeza da divergênciaImplementação em PythonProblemas de teste padrãoCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAAstrophysical systems present significant challenges due to the vast range of phenomena and scales they encompass. Magnetohydrodynamic (MHD) models are particularly integral to the study of such systems, with applications spanning Stellar Astrophysics, such as solar wind and magnetoconvection, to Extragalactic Astrophysics, including modeling the interstellar medium. Numerical simulations play a crucial role in advancing our understanding of these complex systems by providing approximate predictions of their behavior under predefined conditions. However, the computational demands of MHD equations make it essential to achieve these simulations within realistic timeframes. To address this, most advanced MHD simulation codes are written in low-level programming languages, such as C, C++, and FORTRAN. While powerful, these languages are challenging to interpret, which steepens the learning curves for new users. Furthermore, existing simulation codes often require separate software for data visualization and analysis, adding complexity and delaying insights. This dissertation presents a Python-based code for astrophysical MHD simulations that addresses these limitations by offering an accessible and user-friendly alternative. The code integrates tools for real-time visualization and analysis, enabling users to monitor the evolution of their simulations as they run. To minimize wasted computational resources and user effort, the code includes automatic error-checking mechanisms to identify input parameters and initial conditions that could lead to numerical instabilities. The performance and accuracy of the code are validated through standard test problems, including the Brio-Wu shock tube, the Orszag-Tang vortex, and a MHD spherical blast wave. Detailed descriptions of the algorithms and methodologies implemented are provided, highlighting the potential of this tool to streamline MHD research.Os sistemas astrofísicos apresentam desafios significativos devido à vasta gama de fenômenos e escalas que abrangem. Os modelos magnetohidrodinâmicos (MHD) são particularmente integrais ao estudo de tais sistemas, com aplicações que abrangem a Astrofísica Estelar, como o vento solar e a magnetoconvecção, até a Astrofísica Extragaláctica, incluindo a modelagem do meio interestelar. As simulações numéricas desempenham um papel crucial no avanço da nossa compreensão desses sistemas complexos, fornecendo previsões aproximadas de seu comportamento sob condições predefinidas. No entanto, as demandas computacionais das equações MHD tornam essencial a obtenção dessas simulações dentro de prazos realistas. Para resolver isso, a maioria dos códigos de simulação MHD avançados são escritos em linguagens de programação de baixo nível, como C, C++ e FORTRAN. Embora poderosas, essas linguagens são desafiadoras de interpretar, o que aumenta as curvas de aprendizado para novos usuários. Além disso, os códigos de simulação existentes geralmente exigem software separado para visualização e análise de dados, adicionando complexidade e atrasando insights. Esta dissertação apresenta um código baseado em Python para simulações MHD astrofísicas que aborda essas limitações, oferecendo uma alternativa acessível e amigável. O código integra ferramentas para visualização e análise em tempo real, permitindo que os usuários monitorem a evolução de suas simulações enquanto elas são executadas. Para minimizar o desperdício de recursos computacionais e esforço do usuário, o código inclui mecanismos automáticos de verificação de erros para identificar parâmetros de entrada e condições iniciais que podem levar a instabilidades numéricas. O desempenho e a precisão do código são validados por meio de problemas de teste padrão, incluindo o tubo de choque Brio-Wu, o vórtice Orszag-Tang e uma onda de explosão esférica MHD. Descrições detalhadas dos algoritmos e metodologias implementadas são fornecidas, destacando o potencial desta ferramenta para agilizar a pesquisa em MHD.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICAMohan, Madras Viswanathan Gandhihttps://orcid.org/0000-0002-3298-402Xhttp://lattes.cnpq.br/0049111339899544http://lattes.cnpq.br/1995273890709490Almeida, Leonardo Andrade dehttps://orcid.org/0000-0002-3817-6402http://lattes.cnpq.br/7812463045514059Machado, Leonardo DantasBurkhart, BlakesleyRocha, Gabriel Wendell Celestino2025-04-07T20:16:19Z2025-04-07T20:16:19Z2025-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfROCHA, Gabriel Wendell Celestino. Mathematical and computational modelling of magnetohydrodynamics. Orientador: Dr. Madras Viswanathan Gandhi Mohan. 2025. 186f. Dissertação (Mestrado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2025.https://repositorio.ufrn.br/handle/123456789/63393ark:/41046/0013000017j4cinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2025-04-07T20:16:55Zoai:repositorio.ufrn.br:123456789/63393Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2025-04-07T20:16:55Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Mathematical and computational modelling of magnetohydrodynamics
title Mathematical and computational modelling of magnetohydrodynamics
spellingShingle Mathematical and computational modelling of magnetohydrodynamics
Rocha, Gabriel Wendell Celestino
Magnetohidrodinâmica (MHD)
Métodos numéricos
Limpeza da divergência
Implementação em Python
Problemas de teste padrão
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Mathematical and computational modelling of magnetohydrodynamics
title_full Mathematical and computational modelling of magnetohydrodynamics
title_fullStr Mathematical and computational modelling of magnetohydrodynamics
title_full_unstemmed Mathematical and computational modelling of magnetohydrodynamics
title_sort Mathematical and computational modelling of magnetohydrodynamics
author Rocha, Gabriel Wendell Celestino
author_facet Rocha, Gabriel Wendell Celestino
author_role author
dc.contributor.none.fl_str_mv Mohan, Madras Viswanathan Gandhi
https://orcid.org/0000-0002-3298-402X
http://lattes.cnpq.br/0049111339899544
http://lattes.cnpq.br/1995273890709490
Almeida, Leonardo Andrade de
https://orcid.org/0000-0002-3817-6402
http://lattes.cnpq.br/7812463045514059
Machado, Leonardo Dantas
Burkhart, Blakesley
dc.contributor.author.fl_str_mv Rocha, Gabriel Wendell Celestino
dc.subject.por.fl_str_mv Magnetohidrodinâmica (MHD)
Métodos numéricos
Limpeza da divergência
Implementação em Python
Problemas de teste padrão
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
topic Magnetohidrodinâmica (MHD)
Métodos numéricos
Limpeza da divergência
Implementação em Python
Problemas de teste padrão
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description Astrophysical systems present significant challenges due to the vast range of phenomena and scales they encompass. Magnetohydrodynamic (MHD) models are particularly integral to the study of such systems, with applications spanning Stellar Astrophysics, such as solar wind and magnetoconvection, to Extragalactic Astrophysics, including modeling the interstellar medium. Numerical simulations play a crucial role in advancing our understanding of these complex systems by providing approximate predictions of their behavior under predefined conditions. However, the computational demands of MHD equations make it essential to achieve these simulations within realistic timeframes. To address this, most advanced MHD simulation codes are written in low-level programming languages, such as C, C++, and FORTRAN. While powerful, these languages are challenging to interpret, which steepens the learning curves for new users. Furthermore, existing simulation codes often require separate software for data visualization and analysis, adding complexity and delaying insights. This dissertation presents a Python-based code for astrophysical MHD simulations that addresses these limitations by offering an accessible and user-friendly alternative. The code integrates tools for real-time visualization and analysis, enabling users to monitor the evolution of their simulations as they run. To minimize wasted computational resources and user effort, the code includes automatic error-checking mechanisms to identify input parameters and initial conditions that could lead to numerical instabilities. The performance and accuracy of the code are validated through standard test problems, including the Brio-Wu shock tube, the Orszag-Tang vortex, and a MHD spherical blast wave. Detailed descriptions of the algorithms and methodologies implemented are provided, highlighting the potential of this tool to streamline MHD research.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-07T20:16:19Z
2025-04-07T20:16:19Z
2025-02-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ROCHA, Gabriel Wendell Celestino. Mathematical and computational modelling of magnetohydrodynamics. Orientador: Dr. Madras Viswanathan Gandhi Mohan. 2025. 186f. Dissertação (Mestrado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2025.
https://repositorio.ufrn.br/handle/123456789/63393
dc.identifier.dark.fl_str_mv ark:/41046/0013000017j4c
identifier_str_mv ROCHA, Gabriel Wendell Celestino. Mathematical and computational modelling of magnetohydrodynamics. Orientador: Dr. Madras Viswanathan Gandhi Mohan. 2025. 186f. Dissertação (Mestrado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2025.
ark:/41046/0013000017j4c
url https://repositorio.ufrn.br/handle/123456789/63393
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1846690610459705344