Late-time cosmology with third generation gravitational waves observatories
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Format: | Doctoral thesis |
| Language: | por |
| Source: | Repositório Institucional da UFRN |
| dARK ID: | ark:/41046/001300000nfj5 |
| Download full: | https://repositorio.ufrn.br/handle/123456789/54566 |
Summary: | With the first detection of gravitational waves in 2015 by the observatories LIGO Hanford and Livingston, a new window opened to the study of astronomy, astrophysics, and cosmology. With gravitational waves emitted by binary systems of compact objects, such as binaries of black holes and neutron stars, we can measure directly their luminosity distances dL, similar to type Ia supernovae called standard candles. Thus, these gravitational wave sources received the name standard sirens, in analogy with the standard candles. If an electromagnetic counterpart of these sources is available, as the signal GW170817, we can identify directly their sky position, and so, their host galaxies and redshifts z. Thus, having a relationship dL − z through detections of gravitational waves with electromagnetic counterparts, we can perform cosmological tests, such as measuring H0, performing Bayesian model selection, and constraining cosmographic parameters, among others. In this work, we explore the strength of the planned ground-based third generation observatories, Einstein Telescope and Cosmic Explorer to probe the evolution of the Universe’s expansion. We start presenting our software GWDALI developed to estimate uncertainties in gravitational wave parameters via Fisher-Matrix and beyond Gaussianity approach of likelihoods. We also explore how much the synergy between third generation observatories can improve measurements of luminosity distances of bright standard sirens (standard sirens with electromagnetic counterparts) to get the best cosmological constants from dL − z relationships. Finally, we deal with the cosmography approach, forecasting the maximum accuracy in the measurements of the first three cosmographic parameters, Hubble constant H0, deceleration parameter q0, and jerk j0 with Einstein Telescope. |
| id |
UFRN_01df31fb7cc8f68dc4d5040e8a79b0b5 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/54566 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
Late-time cosmology with third generation gravitational waves observatoriesFísicaStandard sirensLuminosity distanceCosmographyGWDALIEinstein telescopeCosmic explorerCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAWith the first detection of gravitational waves in 2015 by the observatories LIGO Hanford and Livingston, a new window opened to the study of astronomy, astrophysics, and cosmology. With gravitational waves emitted by binary systems of compact objects, such as binaries of black holes and neutron stars, we can measure directly their luminosity distances dL, similar to type Ia supernovae called standard candles. Thus, these gravitational wave sources received the name standard sirens, in analogy with the standard candles. If an electromagnetic counterpart of these sources is available, as the signal GW170817, we can identify directly their sky position, and so, their host galaxies and redshifts z. Thus, having a relationship dL − z through detections of gravitational waves with electromagnetic counterparts, we can perform cosmological tests, such as measuring H0, performing Bayesian model selection, and constraining cosmographic parameters, among others. In this work, we explore the strength of the planned ground-based third generation observatories, Einstein Telescope and Cosmic Explorer to probe the evolution of the Universe’s expansion. We start presenting our software GWDALI developed to estimate uncertainties in gravitational wave parameters via Fisher-Matrix and beyond Gaussianity approach of likelihoods. We also explore how much the synergy between third generation observatories can improve measurements of luminosity distances of bright standard sirens (standard sirens with electromagnetic counterparts) to get the best cosmological constants from dL − z relationships. Finally, we deal with the cosmography approach, forecasting the maximum accuracy in the measurements of the first three cosmographic parameters, Hubble constant H0, deceleration parameter q0, and jerk j0 with Einstein Telescope.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESCom a primeira detecção de ondas gravitacionais em 2015 pelos observatórios LIGO Hanford e Livingston, uma nova janela se abriu para o estudo da astronomia, astrofísica e cosmologia. Com ondas gravitacionais emitidas por sistemas binários de objetos compactos, como binários de buracos negros e estrelas de nêutrons, podemos medir diretamente suas distâncias de luminosidade dL , semelhantes às supernovas do tipo Ia chamadas de velas padrão. Assim, essas fontes de ondas gravitacionais receberam o nome de sirenes padrão, em analogia com as velas padrão. Se uma contraparte eletromagnética dessas fontes estiver disponível, como o sinal GW170817, podemos identificar diretamente sua posição no céu e, portanto, suas galáxias hospedeiras e redshifts z. Assim, tendo uma relação dL − z por meio de detecções de ondas gravitacionais com contrapartes eletromagnéticas, podemos realizar testes cosmológicos, como medir H0 , realizar seleção de modelo bayesiano, restringir parâmetros cosmográficos, entre outros. Neste trabalho, exploramos a força dos planejados observatórios terrestres de terceira geração, o Einstein Telescope e o Cosmic Explorer para sondar a evolução da expansão do Universo. Iniciamos apresentando nosso software GWDALI desenvolvido para estimar incertezas em parâmetros de ondas gravitacionais via Matrizes de Fisher e aproximações além-gaussianas de likelihoods. Também exploramos o quanto a sinergia entre observatórios de terceira geração pode melhorar as medições de distâncias de luminosidade de sirenes padrões brilhantes (sirenes padrão com contrapartes eletromagnéticas) para obter as melhores constantes cosmológicas das relações dL −z. Finalmente, lidamos com a abordagem cosmográfica, prevendo a máxima precisão nas medições dos três primeiros parâmetros cosmográficos, constante de Hubble H0 , parâmetro de desaceleração q0 e jerk j0 com o Einstein Telescope.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICASturani, Riccardohttps://orcid.org/0000-0003-1552-0095http://lattes.cnpq.br/0529749022051880https://orcid.org/0000-0003-2157-4401http://lattes.cnpq.br/9771195169911237Aguiar, Odylio Denys deNunes, Rafael da CostaSilva Júnior, Raimundohttps://orcid.org/0000-0001-8318-7824http://lattes.cnpq.br/2680905746363331Holanda, Rodrigo Fernandes Lira deSouza, Josiel Mendonça Soares de2023-08-21T20:50:20Z2023-08-21T20:50:20Z2023-07-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSOUZA, Josiel Mendonça Soares de. Late-time cosmology with third generation gravitational waves observatories. Orientador: Riccardo Sturani. 2023. 162f. Tese (Doutorado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2023.https://repositorio.ufrn.br/handle/123456789/54566ark:/41046/001300000nfj5info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2023-08-21T20:50:49Zoai:repositorio.ufrn.br:123456789/54566Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2023-08-21T20:50:49Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
Late-time cosmology with third generation gravitational waves observatories |
| title |
Late-time cosmology with third generation gravitational waves observatories |
| spellingShingle |
Late-time cosmology with third generation gravitational waves observatories Souza, Josiel Mendonça Soares de Física Standard sirens Luminosity distance Cosmography GWDALI Einstein telescope Cosmic explorer CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA |
| title_short |
Late-time cosmology with third generation gravitational waves observatories |
| title_full |
Late-time cosmology with third generation gravitational waves observatories |
| title_fullStr |
Late-time cosmology with third generation gravitational waves observatories |
| title_full_unstemmed |
Late-time cosmology with third generation gravitational waves observatories |
| title_sort |
Late-time cosmology with third generation gravitational waves observatories |
| author |
Souza, Josiel Mendonça Soares de |
| author_facet |
Souza, Josiel Mendonça Soares de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Sturani, Riccardo https://orcid.org/0000-0003-1552-0095 http://lattes.cnpq.br/0529749022051880 https://orcid.org/0000-0003-2157-4401 http://lattes.cnpq.br/9771195169911237 Aguiar, Odylio Denys de Nunes, Rafael da Costa Silva Júnior, Raimundo https://orcid.org/0000-0001-8318-7824 http://lattes.cnpq.br/2680905746363331 Holanda, Rodrigo Fernandes Lira de |
| dc.contributor.author.fl_str_mv |
Souza, Josiel Mendonça Soares de |
| dc.subject.por.fl_str_mv |
Física Standard sirens Luminosity distance Cosmography GWDALI Einstein telescope Cosmic explorer CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA |
| topic |
Física Standard sirens Luminosity distance Cosmography GWDALI Einstein telescope Cosmic explorer CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA |
| description |
With the first detection of gravitational waves in 2015 by the observatories LIGO Hanford and Livingston, a new window opened to the study of astronomy, astrophysics, and cosmology. With gravitational waves emitted by binary systems of compact objects, such as binaries of black holes and neutron stars, we can measure directly their luminosity distances dL, similar to type Ia supernovae called standard candles. Thus, these gravitational wave sources received the name standard sirens, in analogy with the standard candles. If an electromagnetic counterpart of these sources is available, as the signal GW170817, we can identify directly their sky position, and so, their host galaxies and redshifts z. Thus, having a relationship dL − z through detections of gravitational waves with electromagnetic counterparts, we can perform cosmological tests, such as measuring H0, performing Bayesian model selection, and constraining cosmographic parameters, among others. In this work, we explore the strength of the planned ground-based third generation observatories, Einstein Telescope and Cosmic Explorer to probe the evolution of the Universe’s expansion. We start presenting our software GWDALI developed to estimate uncertainties in gravitational wave parameters via Fisher-Matrix and beyond Gaussianity approach of likelihoods. We also explore how much the synergy between third generation observatories can improve measurements of luminosity distances of bright standard sirens (standard sirens with electromagnetic counterparts) to get the best cosmological constants from dL − z relationships. Finally, we deal with the cosmography approach, forecasting the maximum accuracy in the measurements of the first three cosmographic parameters, Hubble constant H0, deceleration parameter q0, and jerk j0 with Einstein Telescope. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-08-21T20:50:20Z 2023-08-21T20:50:20Z 2023-07-12 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
SOUZA, Josiel Mendonça Soares de. Late-time cosmology with third generation gravitational waves observatories. Orientador: Riccardo Sturani. 2023. 162f. Tese (Doutorado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2023. https://repositorio.ufrn.br/handle/123456789/54566 |
| dc.identifier.dark.fl_str_mv |
ark:/41046/001300000nfj5 |
| identifier_str_mv |
SOUZA, Josiel Mendonça Soares de. Late-time cosmology with third generation gravitational waves observatories. Orientador: Riccardo Sturani. 2023. 162f. Tese (Doutorado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2023. ark:/41046/001300000nfj5 |
| url |
https://repositorio.ufrn.br/handle/123456789/54566 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1846690491261779968 |