Late-time cosmology with third generation gravitational waves observatories

Bibliographic Details
Main Author: Souza, Josiel Mendonça Soares de
Publication Date: 2023
Format: Doctoral thesis
Language: por
Source: Repositório Institucional da UFRN
dARK ID: ark:/41046/001300000nfj5
Download full: https://repositorio.ufrn.br/handle/123456789/54566
Summary: With the first detection of gravitational waves in 2015 by the observatories LIGO Hanford and Livingston, a new window opened to the study of astronomy, astrophysics, and cosmology. With gravitational waves emitted by binary systems of compact objects, such as binaries of black holes and neutron stars, we can measure directly their luminosity distances dL, similar to type Ia supernovae called standard candles. Thus, these gravitational wave sources received the name standard sirens, in analogy with the standard candles. If an electromagnetic counterpart of these sources is available, as the signal GW170817, we can identify directly their sky position, and so, their host galaxies and redshifts z. Thus, having a relationship dL − z through detections of gravitational waves with electromagnetic counterparts, we can perform cosmological tests, such as measuring H0, performing Bayesian model selection, and constraining cosmographic parameters, among others. In this work, we explore the strength of the planned ground-based third generation observatories, Einstein Telescope and Cosmic Explorer to probe the evolution of the Universe’s expansion. We start presenting our software GWDALI developed to estimate uncertainties in gravitational wave parameters via Fisher-Matrix and beyond Gaussianity approach of likelihoods. We also explore how much the synergy between third generation observatories can improve measurements of luminosity distances of bright standard sirens (standard sirens with electromagnetic counterparts) to get the best cosmological constants from dL − z relationships. Finally, we deal with the cosmography approach, forecasting the maximum accuracy in the measurements of the first three cosmographic parameters, Hubble constant H0, deceleration parameter q0, and jerk j0 with Einstein Telescope.
id UFRN_01df31fb7cc8f68dc4d5040e8a79b0b5
oai_identifier_str oai:repositorio.ufrn.br:123456789/54566
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Late-time cosmology with third generation gravitational waves observatoriesFísicaStandard sirensLuminosity distanceCosmographyGWDALIEinstein telescopeCosmic explorerCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAWith the first detection of gravitational waves in 2015 by the observatories LIGO Hanford and Livingston, a new window opened to the study of astronomy, astrophysics, and cosmology. With gravitational waves emitted by binary systems of compact objects, such as binaries of black holes and neutron stars, we can measure directly their luminosity distances dL, similar to type Ia supernovae called standard candles. Thus, these gravitational wave sources received the name standard sirens, in analogy with the standard candles. If an electromagnetic counterpart of these sources is available, as the signal GW170817, we can identify directly their sky position, and so, their host galaxies and redshifts z. Thus, having a relationship dL − z through detections of gravitational waves with electromagnetic counterparts, we can perform cosmological tests, such as measuring H0, performing Bayesian model selection, and constraining cosmographic parameters, among others. In this work, we explore the strength of the planned ground-based third generation observatories, Einstein Telescope and Cosmic Explorer to probe the evolution of the Universe’s expansion. We start presenting our software GWDALI developed to estimate uncertainties in gravitational wave parameters via Fisher-Matrix and beyond Gaussianity approach of likelihoods. We also explore how much the synergy between third generation observatories can improve measurements of luminosity distances of bright standard sirens (standard sirens with electromagnetic counterparts) to get the best cosmological constants from dL − z relationships. Finally, we deal with the cosmography approach, forecasting the maximum accuracy in the measurements of the first three cosmographic parameters, Hubble constant H0, deceleration parameter q0, and jerk j0 with Einstein Telescope.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESCom a primeira detecção de ondas gravitacionais em 2015 pelos observatórios LIGO Hanford e Livingston, uma nova janela se abriu para o estudo da astronomia, astrofísica e cosmologia. Com ondas gravitacionais emitidas por sistemas binários de objetos compactos, como binários de buracos negros e estrelas de nêutrons, podemos medir diretamente suas distâncias de luminosidade dL , semelhantes às supernovas do tipo Ia chamadas de velas padrão. Assim, essas fontes de ondas gravitacionais receberam o nome de sirenes padrão, em analogia com as velas padrão. Se uma contraparte eletromagnética dessas fontes estiver disponível, como o sinal GW170817, podemos identificar diretamente sua posição no céu e, portanto, suas galáxias hospedeiras e redshifts z. Assim, tendo uma relação dL − z por meio de detecções de ondas gravitacionais com contrapartes eletromagnéticas, podemos realizar testes cosmológicos, como medir H0 , realizar seleção de modelo bayesiano, restringir parâmetros cosmográficos, entre outros. Neste trabalho, exploramos a força dos planejados observatórios terrestres de terceira geração, o Einstein Telescope e o Cosmic Explorer para sondar a evolução da expansão do Universo. Iniciamos apresentando nosso software GWDALI desenvolvido para estimar incertezas em parâmetros de ondas gravitacionais via Matrizes de Fisher e aproximações além-gaussianas de likelihoods. Também exploramos o quanto a sinergia entre observatórios de terceira geração pode melhorar as medições de distâncias de luminosidade de sirenes padrões brilhantes (sirenes padrão com contrapartes eletromagnéticas) para obter as melhores constantes cosmológicas das relações dL −z. Finalmente, lidamos com a abordagem cosmográfica, prevendo a máxima precisão nas medições dos três primeiros parâmetros cosmográficos, constante de Hubble H0 , parâmetro de desaceleração q0 e jerk j0 com o Einstein Telescope.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICASturani, Riccardohttps://orcid.org/0000-0003-1552-0095http://lattes.cnpq.br/0529749022051880https://orcid.org/0000-0003-2157-4401http://lattes.cnpq.br/9771195169911237Aguiar, Odylio Denys deNunes, Rafael da CostaSilva Júnior, Raimundohttps://orcid.org/0000-0001-8318-7824http://lattes.cnpq.br/2680905746363331Holanda, Rodrigo Fernandes Lira deSouza, Josiel Mendonça Soares de2023-08-21T20:50:20Z2023-08-21T20:50:20Z2023-07-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSOUZA, Josiel Mendonça Soares de. Late-time cosmology with third generation gravitational waves observatories. Orientador: Riccardo Sturani. 2023. 162f. Tese (Doutorado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2023.https://repositorio.ufrn.br/handle/123456789/54566ark:/41046/001300000nfj5info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2023-08-21T20:50:49Zoai:repositorio.ufrn.br:123456789/54566Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2023-08-21T20:50:49Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Late-time cosmology with third generation gravitational waves observatories
title Late-time cosmology with third generation gravitational waves observatories
spellingShingle Late-time cosmology with third generation gravitational waves observatories
Souza, Josiel Mendonça Soares de
Física
Standard sirens
Luminosity distance
Cosmography
GWDALI
Einstein telescope
Cosmic explorer
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Late-time cosmology with third generation gravitational waves observatories
title_full Late-time cosmology with third generation gravitational waves observatories
title_fullStr Late-time cosmology with third generation gravitational waves observatories
title_full_unstemmed Late-time cosmology with third generation gravitational waves observatories
title_sort Late-time cosmology with third generation gravitational waves observatories
author Souza, Josiel Mendonça Soares de
author_facet Souza, Josiel Mendonça Soares de
author_role author
dc.contributor.none.fl_str_mv Sturani, Riccardo
https://orcid.org/0000-0003-1552-0095
http://lattes.cnpq.br/0529749022051880
https://orcid.org/0000-0003-2157-4401
http://lattes.cnpq.br/9771195169911237
Aguiar, Odylio Denys de
Nunes, Rafael da Costa
Silva Júnior, Raimundo
https://orcid.org/0000-0001-8318-7824
http://lattes.cnpq.br/2680905746363331
Holanda, Rodrigo Fernandes Lira de
dc.contributor.author.fl_str_mv Souza, Josiel Mendonça Soares de
dc.subject.por.fl_str_mv Física
Standard sirens
Luminosity distance
Cosmography
GWDALI
Einstein telescope
Cosmic explorer
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
topic Física
Standard sirens
Luminosity distance
Cosmography
GWDALI
Einstein telescope
Cosmic explorer
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description With the first detection of gravitational waves in 2015 by the observatories LIGO Hanford and Livingston, a new window opened to the study of astronomy, astrophysics, and cosmology. With gravitational waves emitted by binary systems of compact objects, such as binaries of black holes and neutron stars, we can measure directly their luminosity distances dL, similar to type Ia supernovae called standard candles. Thus, these gravitational wave sources received the name standard sirens, in analogy with the standard candles. If an electromagnetic counterpart of these sources is available, as the signal GW170817, we can identify directly their sky position, and so, their host galaxies and redshifts z. Thus, having a relationship dL − z through detections of gravitational waves with electromagnetic counterparts, we can perform cosmological tests, such as measuring H0, performing Bayesian model selection, and constraining cosmographic parameters, among others. In this work, we explore the strength of the planned ground-based third generation observatories, Einstein Telescope and Cosmic Explorer to probe the evolution of the Universe’s expansion. We start presenting our software GWDALI developed to estimate uncertainties in gravitational wave parameters via Fisher-Matrix and beyond Gaussianity approach of likelihoods. We also explore how much the synergy between third generation observatories can improve measurements of luminosity distances of bright standard sirens (standard sirens with electromagnetic counterparts) to get the best cosmological constants from dL − z relationships. Finally, we deal with the cosmography approach, forecasting the maximum accuracy in the measurements of the first three cosmographic parameters, Hubble constant H0, deceleration parameter q0, and jerk j0 with Einstein Telescope.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-21T20:50:20Z
2023-08-21T20:50:20Z
2023-07-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUZA, Josiel Mendonça Soares de. Late-time cosmology with third generation gravitational waves observatories. Orientador: Riccardo Sturani. 2023. 162f. Tese (Doutorado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2023.
https://repositorio.ufrn.br/handle/123456789/54566
dc.identifier.dark.fl_str_mv ark:/41046/001300000nfj5
identifier_str_mv SOUZA, Josiel Mendonça Soares de. Late-time cosmology with third generation gravitational waves observatories. Orientador: Riccardo Sturani. 2023. 162f. Tese (Doutorado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2023.
ark:/41046/001300000nfj5
url https://repositorio.ufrn.br/handle/123456789/54566
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1846690491261779968