Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Tipo de documento: | Dissertação |
| Idioma: | por |
| Título da fonte: | Repositório Institucional da UFPel - Guaiaca |
| Texto Completo: | http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182 |
Resumo: | In this study, a model based on Recurrent Convolutional Neural Networks (RCNN) is proposed for short-term meteorological forecasting (nowcasting). This approach presents an alternative to traditional statistical extrapolation techniques. The chosen methodology involves the implementation of a supervised predictive learning RCNN model known as PredRNN++. The model is trained and evaluated using data in the form of images captured by four radars situated in the southern region of Brazil. These radar images are made freely accessible via the website of the National Institute for Space Research (INPE). The images serve as both input and output for the neural network. For the output, the model aims to predict images ranging from 6 to 120 minutes ahead in time, relative to the provided input images. The forecasted images are compared against the actual observations to assess the accuracy of the PredRNN++ model. This evaluation process involves empirical analysis of the predicted images, along with the application of statistical metrics such as Root Mean Square Error (RMSE), Structural Similarity Index (SSIM), and Mean Absolute Error (MAE). The assessment focuses on an extreme weather event that occurred in the southern region of Brazil on June 12, 2018. The outcomes of the study indicate that the PredRNN++ model demonstrates promise as a viable alternative for nowcasting predictions. This is attributed to its ability to effectively replicate the intensity and spatial distribution of the emulated meteorological systems. |
| id |
UFPL_7608d98d1b9d3b51a4e8a7ace9255a6a |
|---|---|
| oai_identifier_str |
oai:guaiaca.ufpel.edu.br:prefix/14182 |
| network_acronym_str |
UFPL |
| network_name_str |
Repositório Institucional da UFPel - Guaiaca |
| repository_id_str |
|
| spelling |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radarRecurrent convolutional neural networks applied to short-term weather forecasting through radar imagesRedes neuraisMeteorologiaNowcastingRadarNeural networksMeteorologyCIENCIAS EXATAS E DA TERRAMATEMATICAMETEOROLOGIAIn this study, a model based on Recurrent Convolutional Neural Networks (RCNN) is proposed for short-term meteorological forecasting (nowcasting). This approach presents an alternative to traditional statistical extrapolation techniques. The chosen methodology involves the implementation of a supervised predictive learning RCNN model known as PredRNN++. The model is trained and evaluated using data in the form of images captured by four radars situated in the southern region of Brazil. These radar images are made freely accessible via the website of the National Institute for Space Research (INPE). The images serve as both input and output for the neural network. For the output, the model aims to predict images ranging from 6 to 120 minutes ahead in time, relative to the provided input images. The forecasted images are compared against the actual observations to assess the accuracy of the PredRNN++ model. This evaluation process involves empirical analysis of the predicted images, along with the application of statistical metrics such as Root Mean Square Error (RMSE), Structural Similarity Index (SSIM), and Mean Absolute Error (MAE). The assessment focuses on an extreme weather event that occurred in the southern region of Brazil on June 12, 2018. The outcomes of the study indicate that the PredRNN++ model demonstrates promise as a viable alternative for nowcasting predictions. This is attributed to its ability to effectively replicate the intensity and spatial distribution of the emulated meteorological systems.OutrosNeste trabalho, propõe-se um modelo baseado em Redes Neurais Convolucionais Recorrentes (RNCR), para previsão meteorológica de curto prazo nowcasting. Esta abordagem é uma alternativa a técnicas tradicionais de extrapolação estatística. Para isso, foi utilizada uma RNCR supervisionada de aprendizagem preditiva conhecida como PredRNN++. Foram utilizados dados (imagens) de quatro radares localizados no sul do Brasil, disponíveis para acesso gratuito no site do INPE (Instituto Nacional de Pesquisas Espaciais), como entrada e saída da rede. Na saída, o alvo ou professor, são imagens de 6 a 120 minutos à frente no tempo, em relação a entrada, ou seja, o que se deseja prever. Para se verificar a qualidade da previsão gerada pela PredRNN++, além de uma análise empírica das imagens previstas, utilizam-se as métricas estatísticas RMSE, SSIM e MAE explorando um evento extremo, ocorrido no sul do Brasil, em 12 de junho de 2018. A rede mostrou-se uma alternativa viável para previsão de nowcasting, uma vez que reproduz a intensidade e a localização dos sistemas emulados.Universidade Federal de PelotasPrograma de Pós-Graduação em Modelagem MatemáticaUFPelBrasilhttp://lattes.cnpq.br/6365148459233818https://orcid.org/0000-0002-4042-6335http://lattes.cnpq.br/9865056179221557Shiguemori, Élcio Hideitihttp://lattes.cnpq.br/7243145638158319Calvetti, Leonardohttp://lattes.cnpq.br/1621353966900001Härter, Fabrício PereiraRossatto, Felipe Copceski2024-10-02T20:16:41Z2024-10-022024-10-02T20:16:41Z2023-09-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfROSSATTO, Felipe Copceski. Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar. 2023. 160 f. Dissertação (Mestrado em Modelagem Matemática) - Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2023.http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182porCC BY-NC-SAinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPEL2024-10-03T06:03:27Zoai:guaiaca.ufpel.edu.br:prefix/14182Repositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2024-10-03T06:03:27Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false |
| dc.title.none.fl_str_mv |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar Recurrent convolutional neural networks applied to short-term weather forecasting through radar images |
| title |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar |
| spellingShingle |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar Rossatto, Felipe Copceski Redes neurais Meteorologia Nowcasting Radar Neural networks Meteorology CIENCIAS EXATAS E DA TERRA MATEMATICA METEOROLOGIA |
| title_short |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar |
| title_full |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar |
| title_fullStr |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar |
| title_full_unstemmed |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar |
| title_sort |
Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar |
| author |
Rossatto, Felipe Copceski |
| author_facet |
Rossatto, Felipe Copceski |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
http://lattes.cnpq.br/6365148459233818 https://orcid.org/0000-0002-4042-6335 http://lattes.cnpq.br/9865056179221557 Shiguemori, Élcio Hideiti http://lattes.cnpq.br/7243145638158319 Calvetti, Leonardo http://lattes.cnpq.br/1621353966900001 Härter, Fabrício Pereira |
| dc.contributor.author.fl_str_mv |
Rossatto, Felipe Copceski |
| dc.subject.por.fl_str_mv |
Redes neurais Meteorologia Nowcasting Radar Neural networks Meteorology CIENCIAS EXATAS E DA TERRA MATEMATICA METEOROLOGIA |
| topic |
Redes neurais Meteorologia Nowcasting Radar Neural networks Meteorology CIENCIAS EXATAS E DA TERRA MATEMATICA METEOROLOGIA |
| description |
In this study, a model based on Recurrent Convolutional Neural Networks (RCNN) is proposed for short-term meteorological forecasting (nowcasting). This approach presents an alternative to traditional statistical extrapolation techniques. The chosen methodology involves the implementation of a supervised predictive learning RCNN model known as PredRNN++. The model is trained and evaluated using data in the form of images captured by four radars situated in the southern region of Brazil. These radar images are made freely accessible via the website of the National Institute for Space Research (INPE). The images serve as both input and output for the neural network. For the output, the model aims to predict images ranging from 6 to 120 minutes ahead in time, relative to the provided input images. The forecasted images are compared against the actual observations to assess the accuracy of the PredRNN++ model. This evaluation process involves empirical analysis of the predicted images, along with the application of statistical metrics such as Root Mean Square Error (RMSE), Structural Similarity Index (SSIM), and Mean Absolute Error (MAE). The assessment focuses on an extreme weather event that occurred in the southern region of Brazil on June 12, 2018. The outcomes of the study indicate that the PredRNN++ model demonstrates promise as a viable alternative for nowcasting predictions. This is attributed to its ability to effectively replicate the intensity and spatial distribution of the emulated meteorological systems. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-04 2024-10-02T20:16:41Z 2024-10-02 2024-10-02T20:16:41Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
ROSSATTO, Felipe Copceski. Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar. 2023. 160 f. Dissertação (Mestrado em Modelagem Matemática) - Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2023. http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182 |
| identifier_str_mv |
ROSSATTO, Felipe Copceski. Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar. 2023. 160 f. Dissertação (Mestrado em Modelagem Matemática) - Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2023. |
| url |
http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
CC BY-NC-SA info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
CC BY-NC-SA |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pelotas Programa de Pós-Graduação em Modelagem Matemática UFPel Brasil |
| publisher.none.fl_str_mv |
Universidade Federal de Pelotas Programa de Pós-Graduação em Modelagem Matemática UFPel Brasil |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPel - Guaiaca instname:Universidade Federal de Pelotas (UFPEL) instacron:UFPEL |
| instname_str |
Universidade Federal de Pelotas (UFPEL) |
| instacron_str |
UFPEL |
| institution |
UFPEL |
| reponame_str |
Repositório Institucional da UFPel - Guaiaca |
| collection |
Repositório Institucional da UFPel - Guaiaca |
| repository.name.fl_str_mv |
Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL) |
| repository.mail.fl_str_mv |
rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br |
| _version_ |
1845919980219006976 |