Application of association analysis and natural language processing to improve maintenance management

Bibliographic Details
Main Author: FREIRE, Flávio de Oliveira
Publication Date: 2020
Format: Master thesis
Language: eng
Source: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000069tc
Download full: https://repositorio.ufpe.br/handle/123456789/38743
Summary: With the advancement of technology in various industrial sectors, companies have been generating large amounts of data at all times. These data not only reveal a company's history, but hide relevant patterns that, if strategically explored, can give the company competitive advantages. For this issue, Data Science has stood out as a science that brings effective solutions through a wide variety of techniques that not only clean, structure and extract information from databases, but also provide useful information/indicators for decision-making processes. In the maintenance management field, the company’s failure report database represents an important asset, but has been little explored regarding their existing failure patterns and relationships, which may provide important improvements to the maintenance management systems. The Association Analysis is a sophisticated Data Science technique used to identify cause-and effect relationships among item sets of the most diverse nature, like code numbers and words. Also, Natural Language Processing is a set of Data Science techniques that support the textual data processing to overcome all the language challenges faced when managing this type of data, and provide relevant portions of it to be explored. The process of extracting knowledge from databases is called Knowledge Discovery in Database (KDD) and this process aims, not only to extract relevant information from databases, but also to support decision-making processes. This research aims to propose and apply a KDD Process, which unifies Natural Language Processing techniques with Association Analysis to process a failure report database, and out of its results, imply maintenance management improvements. The KDD Process’ output in the application section revealed the existence of relevant patterns and strong cause-effect relationships among sets of failure codes and among sets of words presented in the failure descriptions. The knowledge obtained in those files was committed to relevant improvements in different maintenance management processes, like scheduling, team assignment, spare-parts replenishment, resource distribution, FMEA/FMECA/RCM, and so on.
id UFPE_61c4739ccb03fe4953caaa8f8b3b3f56
oai_identifier_str oai:repositorio.ufpe.br:123456789/38743
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Application of association analysis and natural language processing to improve maintenance managementGerenciamento de recursos de informaçãoProcessamento de linguagem natural (Computação)Mineração de dados (Computação)Manutenção produtiva totalWith the advancement of technology in various industrial sectors, companies have been generating large amounts of data at all times. These data not only reveal a company's history, but hide relevant patterns that, if strategically explored, can give the company competitive advantages. For this issue, Data Science has stood out as a science that brings effective solutions through a wide variety of techniques that not only clean, structure and extract information from databases, but also provide useful information/indicators for decision-making processes. In the maintenance management field, the company’s failure report database represents an important asset, but has been little explored regarding their existing failure patterns and relationships, which may provide important improvements to the maintenance management systems. The Association Analysis is a sophisticated Data Science technique used to identify cause-and effect relationships among item sets of the most diverse nature, like code numbers and words. Also, Natural Language Processing is a set of Data Science techniques that support the textual data processing to overcome all the language challenges faced when managing this type of data, and provide relevant portions of it to be explored. The process of extracting knowledge from databases is called Knowledge Discovery in Database (KDD) and this process aims, not only to extract relevant information from databases, but also to support decision-making processes. This research aims to propose and apply a KDD Process, which unifies Natural Language Processing techniques with Association Analysis to process a failure report database, and out of its results, imply maintenance management improvements. The KDD Process’ output in the application section revealed the existence of relevant patterns and strong cause-effect relationships among sets of failure codes and among sets of words presented in the failure descriptions. The knowledge obtained in those files was committed to relevant improvements in different maintenance management processes, like scheduling, team assignment, spare-parts replenishment, resource distribution, FMEA/FMECA/RCM, and so on.Com o avanço da tecnologia nos diversos setores industriais, empresas tem gerado grandes quantidades de dados a todo momento. Esses dados não apenas revelam um histórico da empresa, mas escondem padrões relevantes que, se explorados estrategicamente, podem conceder vantagens competitivas a mesma. Nesse sentido, Data Science é uma ciência que traz solução para essa e outras questões através de uma grande variedade de técnicas que não apenas limpam, estruturam e extraem informações de bases de dados, mas também auxiliam o processo de tomada de decisão. No âmbito da gestão da manutenção, o registro de falhas representa um ativo importante, mas este tem sido pouco explorado em relação aos padrões e relacionamentos de falhas existentes que pode fornecer melhorias importantes nos sistemas de gerenciamento de manutenção. A Análise de Associação é uma técnica sofisticada de Data Science usada para identificar relações de causa e efeito entre conjuntos de itens das mais diversas naturezas, como dados numéricos e textuais. Além disso, o Processamento de Linguagem Natural (PLN) é um conjunto de técnicas de Data Science que dão suporte ao processamento de dados textuais, superando todos os desafios de linguagem enfrentados ao gerenciar esse tipo de dado, e fornecem partes relevantes a serem exploradas. O processo de extração de conhecimento em bancos de dados é chamado de Knowledge Discovery in Database (KDD) e esse processo visa não apenas extrair informações relevantes dos bancos de dados, mas também apoiar os processos de tomada de decisão. Este trabalho objetiva propor e aplicar um Processo KDD, que unifique técnicas de Processamento de Linguagem Natural com a Análise de Associação para processar um banco de dados de relatórios de falhas e, a partir de seus resultados, implicar melhorias no gerenciamento de manutenção. O output do processo KDD apresentado na aplicação revelou a existência de padrões relevantes e fortes relações de causa-efeito entre o conjunto de códigos de falha e entre conjuntos de palavras apresentadas nas descrições de falha. O conhecimento obtido nesses arquivos foi conectado com melhorias consideráveis nos diferentes processos de gerenciamento de manutenção, como scheduling, designação de trabalho, compra de peças de reposição, distribuição de recursos, FMEA / FMECA / RCM, entre outros.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de Producao / CAALOPES, Rodrigo SampaioDO VAN, Phuchttp://lattes.cnpq.br/5860466872416575http://lattes.cnpq.br/7741826884583892FREIRE, Flávio de Oliveira2020-11-23T18:34:09Z2020-11-23T18:34:09Z2020-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFREIRE, Flávio de Oliveira. Application of association analysis and natural language processing to improve maintenance management. 2020. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2020.https://repositorio.ufpe.br/handle/123456789/38743ark:/64986/00130000069tcengAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-11-24T05:15:52Zoai:repositorio.ufpe.br:123456789/38743Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-11-24T05:15:52Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Application of association analysis and natural language processing to improve maintenance management
title Application of association analysis and natural language processing to improve maintenance management
spellingShingle Application of association analysis and natural language processing to improve maintenance management
FREIRE, Flávio de Oliveira
Gerenciamento de recursos de informação
Processamento de linguagem natural (Computação)
Mineração de dados (Computação)
Manutenção produtiva total
title_short Application of association analysis and natural language processing to improve maintenance management
title_full Application of association analysis and natural language processing to improve maintenance management
title_fullStr Application of association analysis and natural language processing to improve maintenance management
title_full_unstemmed Application of association analysis and natural language processing to improve maintenance management
title_sort Application of association analysis and natural language processing to improve maintenance management
author FREIRE, Flávio de Oliveira
author_facet FREIRE, Flávio de Oliveira
author_role author
dc.contributor.none.fl_str_mv LOPES, Rodrigo Sampaio
DO VAN, Phuc
http://lattes.cnpq.br/5860466872416575
http://lattes.cnpq.br/7741826884583892
dc.contributor.author.fl_str_mv FREIRE, Flávio de Oliveira
dc.subject.por.fl_str_mv Gerenciamento de recursos de informação
Processamento de linguagem natural (Computação)
Mineração de dados (Computação)
Manutenção produtiva total
topic Gerenciamento de recursos de informação
Processamento de linguagem natural (Computação)
Mineração de dados (Computação)
Manutenção produtiva total
description With the advancement of technology in various industrial sectors, companies have been generating large amounts of data at all times. These data not only reveal a company's history, but hide relevant patterns that, if strategically explored, can give the company competitive advantages. For this issue, Data Science has stood out as a science that brings effective solutions through a wide variety of techniques that not only clean, structure and extract information from databases, but also provide useful information/indicators for decision-making processes. In the maintenance management field, the company’s failure report database represents an important asset, but has been little explored regarding their existing failure patterns and relationships, which may provide important improvements to the maintenance management systems. The Association Analysis is a sophisticated Data Science technique used to identify cause-and effect relationships among item sets of the most diverse nature, like code numbers and words. Also, Natural Language Processing is a set of Data Science techniques that support the textual data processing to overcome all the language challenges faced when managing this type of data, and provide relevant portions of it to be explored. The process of extracting knowledge from databases is called Knowledge Discovery in Database (KDD) and this process aims, not only to extract relevant information from databases, but also to support decision-making processes. This research aims to propose and apply a KDD Process, which unifies Natural Language Processing techniques with Association Analysis to process a failure report database, and out of its results, imply maintenance management improvements. The KDD Process’ output in the application section revealed the existence of relevant patterns and strong cause-effect relationships among sets of failure codes and among sets of words presented in the failure descriptions. The knowledge obtained in those files was committed to relevant improvements in different maintenance management processes, like scheduling, team assignment, spare-parts replenishment, resource distribution, FMEA/FMECA/RCM, and so on.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-23T18:34:09Z
2020-11-23T18:34:09Z
2020-07-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FREIRE, Flávio de Oliveira. Application of association analysis and natural language processing to improve maintenance management. 2020. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2020.
https://repositorio.ufpe.br/handle/123456789/38743
dc.identifier.dark.fl_str_mv ark:/64986/00130000069tc
identifier_str_mv FREIRE, Flávio de Oliveira. Application of association analysis and natural language processing to improve maintenance management. 2020. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2020.
ark:/64986/00130000069tc
url https://repositorio.ufpe.br/handle/123456789/38743
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao / CAA
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao / CAA
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1846272389793447936