Infinitely many solutions for a Hénon-type system in hyperbolic space.

Bibliographic Details
Main Author: Cunha, Patrícia Leal da
Publication Date: 2020
Other Authors: Lemos, Flávio Almeida
Format: Article
Language: eng
Source: Repositório Institucional da UFOP
dARK ID: ark:/61566/00130000060j7
Download full: http://www.repositorio.ufop.br/handle/123456789/12609
https://doi.org/10.1186/s13662-019-2469-6
Summary: This paper is devoted to studying the semilinear elliptic system of Hénon type ⎧⎩⎨⎪⎪−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈H1r(BN),N≥3,{−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈Hr1(BN),N≥3, in the hyperbolic space BNBN, where H1r(BN)={u∈H1(BN):u is radial}Hr1(BN)={u∈H1(BN):u is radial} and −ΔBN−ΔBN denotes the Laplace–Beltrami operator on BNBN, d(x)=dBN(0,x)d(x)=dBN(0,x), Q∈C1(R×R,R)Q∈C1(R×R,R) is p-homogeneous, and K≥0K≥0 is a continuous function. We prove a compactness result and, together with Clark’s theorem, we establish the existence of infinitely many solutions.
id UFOP_8584f405a948cf51a6955b6c4487efe7
oai_identifier_str oai:repositorio.ufop.br:123456789/12609
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling Infinitely many solutions for a Hénon-type system in hyperbolic space.Hénon equationVariational methodsThis paper is devoted to studying the semilinear elliptic system of Hénon type ⎧⎩⎨⎪⎪−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈H1r(BN),N≥3,{−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈Hr1(BN),N≥3, in the hyperbolic space BNBN, where H1r(BN)={u∈H1(BN):u is radial}Hr1(BN)={u∈H1(BN):u is radial} and −ΔBN−ΔBN denotes the Laplace–Beltrami operator on BNBN, d(x)=dBN(0,x)d(x)=dBN(0,x), Q∈C1(R×R,R)Q∈C1(R×R,R) is p-homogeneous, and K≥0K≥0 is a continuous function. We prove a compactness result and, together with Clark’s theorem, we establish the existence of infinitely many solutions.2020-08-17T14:38:53Z2020-08-17T14:38:53Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCUNHA, P. L. da; LEMOS, F. A. Infinitely many solutions for a Hénon-type system in hyperbolic space. Advances in Difference Equations, v. 2020, n. 29, jan. 2020. Disponível em: <https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2469-6>. Acesso em: 03 jul. 2020.1687-1847http://www.repositorio.ufop.br/handle/123456789/12609https://doi.org/10.1186/s13662-019-2469-6ark:/61566/00130000060j7This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Fonte: o próprio artigo.info:eu-repo/semantics/openAccessCunha, Patrícia Leal daLemos, Flávio Almeidaengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2024-11-10T17:07:17Zoai:repositorio.ufop.br:123456789/12609Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332024-11-10T17:07:17Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv Infinitely many solutions for a Hénon-type system in hyperbolic space.
title Infinitely many solutions for a Hénon-type system in hyperbolic space.
spellingShingle Infinitely many solutions for a Hénon-type system in hyperbolic space.
Cunha, Patrícia Leal da
Hénon equation
Variational methods
title_short Infinitely many solutions for a Hénon-type system in hyperbolic space.
title_full Infinitely many solutions for a Hénon-type system in hyperbolic space.
title_fullStr Infinitely many solutions for a Hénon-type system in hyperbolic space.
title_full_unstemmed Infinitely many solutions for a Hénon-type system in hyperbolic space.
title_sort Infinitely many solutions for a Hénon-type system in hyperbolic space.
author Cunha, Patrícia Leal da
author_facet Cunha, Patrícia Leal da
Lemos, Flávio Almeida
author_role author
author2 Lemos, Flávio Almeida
author2_role author
dc.contributor.author.fl_str_mv Cunha, Patrícia Leal da
Lemos, Flávio Almeida
dc.subject.por.fl_str_mv Hénon equation
Variational methods
topic Hénon equation
Variational methods
description This paper is devoted to studying the semilinear elliptic system of Hénon type ⎧⎩⎨⎪⎪−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈H1r(BN),N≥3,{−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈Hr1(BN),N≥3, in the hyperbolic space BNBN, where H1r(BN)={u∈H1(BN):u is radial}Hr1(BN)={u∈H1(BN):u is radial} and −ΔBN−ΔBN denotes the Laplace–Beltrami operator on BNBN, d(x)=dBN(0,x)d(x)=dBN(0,x), Q∈C1(R×R,R)Q∈C1(R×R,R) is p-homogeneous, and K≥0K≥0 is a continuous function. We prove a compactness result and, together with Clark’s theorem, we establish the existence of infinitely many solutions.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-17T14:38:53Z
2020-08-17T14:38:53Z
2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv CUNHA, P. L. da; LEMOS, F. A. Infinitely many solutions for a Hénon-type system in hyperbolic space. Advances in Difference Equations, v. 2020, n. 29, jan. 2020. Disponível em: <https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2469-6>. Acesso em: 03 jul. 2020.
1687-1847
http://www.repositorio.ufop.br/handle/123456789/12609
https://doi.org/10.1186/s13662-019-2469-6
dc.identifier.dark.fl_str_mv ark:/61566/00130000060j7
identifier_str_mv CUNHA, P. L. da; LEMOS, F. A. Infinitely many solutions for a Hénon-type system in hyperbolic space. Advances in Difference Equations, v. 2020, n. 29, jan. 2020. Disponível em: <https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2469-6>. Acesso em: 03 jul. 2020.
1687-1847
ark:/61566/00130000060j7
url http://www.repositorio.ufop.br/handle/123456789/12609
https://doi.org/10.1186/s13662-019-2469-6
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1838994639987671040