Infinitely many solutions for a Hénon-type system in hyperbolic space.
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UFOP |
dARK ID: | ark:/61566/00130000060j7 |
Download full: | http://www.repositorio.ufop.br/handle/123456789/12609 https://doi.org/10.1186/s13662-019-2469-6 |
Summary: | This paper is devoted to studying the semilinear elliptic system of Hénon type ⎧⎩⎨⎪⎪−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈H1r(BN),N≥3,{−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈Hr1(BN),N≥3, in the hyperbolic space BNBN, where H1r(BN)={u∈H1(BN):u is radial}Hr1(BN)={u∈H1(BN):u is radial} and −ΔBN−ΔBN denotes the Laplace–Beltrami operator on BNBN, d(x)=dBN(0,x)d(x)=dBN(0,x), Q∈C1(R×R,R)Q∈C1(R×R,R) is p-homogeneous, and K≥0K≥0 is a continuous function. We prove a compactness result and, together with Clark’s theorem, we establish the existence of infinitely many solutions. |
id |
UFOP_8584f405a948cf51a6955b6c4487efe7 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/12609 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Infinitely many solutions for a Hénon-type system in hyperbolic space.Hénon equationVariational methodsThis paper is devoted to studying the semilinear elliptic system of Hénon type ⎧⎩⎨⎪⎪−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈H1r(BN),N≥3,{−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈Hr1(BN),N≥3, in the hyperbolic space BNBN, where H1r(BN)={u∈H1(BN):u is radial}Hr1(BN)={u∈H1(BN):u is radial} and −ΔBN−ΔBN denotes the Laplace–Beltrami operator on BNBN, d(x)=dBN(0,x)d(x)=dBN(0,x), Q∈C1(R×R,R)Q∈C1(R×R,R) is p-homogeneous, and K≥0K≥0 is a continuous function. We prove a compactness result and, together with Clark’s theorem, we establish the existence of infinitely many solutions.2020-08-17T14:38:53Z2020-08-17T14:38:53Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCUNHA, P. L. da; LEMOS, F. A. Infinitely many solutions for a Hénon-type system in hyperbolic space. Advances in Difference Equations, v. 2020, n. 29, jan. 2020. Disponível em: <https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2469-6>. Acesso em: 03 jul. 2020.1687-1847http://www.repositorio.ufop.br/handle/123456789/12609https://doi.org/10.1186/s13662-019-2469-6ark:/61566/00130000060j7This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Fonte: o próprio artigo.info:eu-repo/semantics/openAccessCunha, Patrícia Leal daLemos, Flávio Almeidaengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2024-11-10T17:07:17Zoai:repositorio.ufop.br:123456789/12609Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332024-11-10T17:07:17Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Infinitely many solutions for a Hénon-type system in hyperbolic space. |
title |
Infinitely many solutions for a Hénon-type system in hyperbolic space. |
spellingShingle |
Infinitely many solutions for a Hénon-type system in hyperbolic space. Cunha, Patrícia Leal da Hénon equation Variational methods |
title_short |
Infinitely many solutions for a Hénon-type system in hyperbolic space. |
title_full |
Infinitely many solutions for a Hénon-type system in hyperbolic space. |
title_fullStr |
Infinitely many solutions for a Hénon-type system in hyperbolic space. |
title_full_unstemmed |
Infinitely many solutions for a Hénon-type system in hyperbolic space. |
title_sort |
Infinitely many solutions for a Hénon-type system in hyperbolic space. |
author |
Cunha, Patrícia Leal da |
author_facet |
Cunha, Patrícia Leal da Lemos, Flávio Almeida |
author_role |
author |
author2 |
Lemos, Flávio Almeida |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cunha, Patrícia Leal da Lemos, Flávio Almeida |
dc.subject.por.fl_str_mv |
Hénon equation Variational methods |
topic |
Hénon equation Variational methods |
description |
This paper is devoted to studying the semilinear elliptic system of Hénon type ⎧⎩⎨⎪⎪−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈H1r(BN),N≥3,{−ΔBNu=K(d(x))Qu(u,v),−ΔBNv=K(d(x))Qv(u,v),u,v∈Hr1(BN),N≥3, in the hyperbolic space BNBN, where H1r(BN)={u∈H1(BN):u is radial}Hr1(BN)={u∈H1(BN):u is radial} and −ΔBN−ΔBN denotes the Laplace–Beltrami operator on BNBN, d(x)=dBN(0,x)d(x)=dBN(0,x), Q∈C1(R×R,R)Q∈C1(R×R,R) is p-homogeneous, and K≥0K≥0 is a continuous function. We prove a compactness result and, together with Clark’s theorem, we establish the existence of infinitely many solutions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-17T14:38:53Z 2020-08-17T14:38:53Z 2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CUNHA, P. L. da; LEMOS, F. A. Infinitely many solutions for a Hénon-type system in hyperbolic space. Advances in Difference Equations, v. 2020, n. 29, jan. 2020. Disponível em: <https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2469-6>. Acesso em: 03 jul. 2020. 1687-1847 http://www.repositorio.ufop.br/handle/123456789/12609 https://doi.org/10.1186/s13662-019-2469-6 |
dc.identifier.dark.fl_str_mv |
ark:/61566/00130000060j7 |
identifier_str_mv |
CUNHA, P. L. da; LEMOS, F. A. Infinitely many solutions for a Hénon-type system in hyperbolic space. Advances in Difference Equations, v. 2020, n. 29, jan. 2020. Disponível em: <https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2469-6>. Acesso em: 03 jul. 2020. 1687-1847 ark:/61566/00130000060j7 |
url |
http://www.repositorio.ufop.br/handle/123456789/12609 https://doi.org/10.1186/s13662-019-2469-6 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1838994639987671040 |