Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks

Detalhes bibliográficos
Autor(a) principal: Carneiro, Raphael Vivacqua
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/18224
Resumo: This work proposes the use of deep neural networks (DNN) for solving the problem of inferring the location of drivable lanes of roadways and their relevant properties such as the lane change right-of-way, even if the line markings are poor or absent. This problem is relevant to the operation of self-driving cars which requires precise maps and precise path plans. Our approach to the problem is the use of a DNN for semantic segmentation of LiDAR remission grid maps into road grid maps. Both LiDAR remission grid maps and road grid maps are square matrices in which each cell represents features of a small 2D-squared region of the real world (e.g., 20cm × 20cm). A LiDAR remission grid map cell contains the information about the average intensity of laser reflection remission on the surface of that particular place. A road grid map cell contains the semantic information about whether it belongs to either a drivable lane or a line marking or a non-drivable area. The semantic codes associated with the road map cells contain all information required for building a network of valid paths, which are required for self-driving cars to build their path plans. Our proposal is a novel technique for the automatic building of viable path plans for self-driving cars. In our experiments we use the self-driving car of UFES, IARA (Intelligent Autonomous Robotic Automobile). We built datasets of manually marked road lanes and use them to train and validate the DNNs used for the semantic segmentation and the generation of road grid maps from laser remission grid maps. The results achieved an average segmentation accuracy of 94.7% in cases of interest. The path plans automatically generated from the inferred road grid maps were tested in the real world using IARA and has shown performance equivalent to that of manually generated path plans.
id UFES_3db0abbe9bf3b0708ab31ba9b9c0d3a0
oai_identifier_str oai:repositorio.ufes.br:10/18224
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networksCarros autônomosRemissão de laserMapas de gradeCiência da ComputaçãoThis work proposes the use of deep neural networks (DNN) for solving the problem of inferring the location of drivable lanes of roadways and their relevant properties such as the lane change right-of-way, even if the line markings are poor or absent. This problem is relevant to the operation of self-driving cars which requires precise maps and precise path plans. Our approach to the problem is the use of a DNN for semantic segmentation of LiDAR remission grid maps into road grid maps. Both LiDAR remission grid maps and road grid maps are square matrices in which each cell represents features of a small 2D-squared region of the real world (e.g., 20cm × 20cm). A LiDAR remission grid map cell contains the information about the average intensity of laser reflection remission on the surface of that particular place. A road grid map cell contains the semantic information about whether it belongs to either a drivable lane or a line marking or a non-drivable area. The semantic codes associated with the road map cells contain all information required for building a network of valid paths, which are required for self-driving cars to build their path plans. Our proposal is a novel technique for the automatic building of viable path plans for self-driving cars. In our experiments we use the self-driving car of UFES, IARA (Intelligent Autonomous Robotic Automobile). We built datasets of manually marked road lanes and use them to train and validate the DNNs used for the semantic segmentation and the generation of road grid maps from laser remission grid maps. The results achieved an average segmentation accuracy of 94.7% in cases of interest. The path plans automatically generated from the inferred road grid maps were tested in the real world using IARA and has shown performance equivalent to that of manually generated path plans.Este trabalho propõe o uso de redes neurais profundas (RNP) para resolver o problema de inferir a localização de vias trafegáveis e as suas propriedades relevantes, como os direitos de mudança de pista, ainda que as marcações de linha estejam pouco visíveis ou ausentes. Este problema é relevante para a operação de carros autônomos que demandam mapas e caminhos precisos. Nossa abordagem para o problema é o uso de RNP para segmentação semântica de mapas de grade de remissão de laser, gerando mapas de grade de vias trafegáveis. Ambos os mapas de grade, os de remissão de laser e os de vias trafegáveis, são matrizes quadradas nas quais cada célula representa características de uma pequena região 2D quadrada do mundo real (p. ex., 20cm x 20cm). Uma célula de um mapa de grade de remissão de laser contém as informações sobre a intensidade média da remissão de laser na superfície daquele local específico. Uma célula de mapa de grade de vias trafegáveis contém as informações semânticas sobre o pertencimento daquela área a uma via trafegável ou a uma marcação de linha na pista ou a uma área não trafegável. Os códigos semânticos associados às células dos mapas de vias trafegáveis contêm informações necessárias para a construção de uma rede de caminhos válidos, necessários para os carros autônomos construírem os seus planos de caminho. A técnica aqui pesquisada é inovadora para a construção automática de planos de caminho viáveis para carros autônomos. Em nossos experimentos, usamos o carro autônomo da UFES, a IARA (Intelligent Autonomous Robotic Automobile). Bases de dados anotadas manualmente são usadas para treinar e validar RNP de segmentação semântica para gerar mapas de grade de vias trafegáveis a partir de mapas de grade de remissão de laser. Os resultados obtidos atingiram uma precisão de segmentação de 94,7% nos casos de interesse. Os planos de caminho gerados automaticamente a partir dos mapas de vias trafegáveis inferidos foram testados no mundo real usando a IARA e demonstraram desempenho equivalente aos dos planos de caminho gerados manualmente.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal do Espírito SantoBRDoutorado em Ciência da ComputaçãoCentro TecnológicoUFESPrograma de Pós-Graduação em InformáticaSouza, Alberto Ferreira dehttps://orcid.org/0000-0003-1561-8447Baduê, Claudine SantosRauber, Thomas WalterKomati, Karin SatieAndrade, Mariella BergerCarneiro, Raphael Vivacqua2024-12-12T23:39:45Z2024-12-12T23:39:45Z2024-09-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/18224info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-12T20:49:32Zoai:repositorio.ufes.br:10/18224Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-12-12T20:49:32Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks
title Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks
spellingShingle Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks
Carneiro, Raphael Vivacqua
Carros autônomos
Remissão de laser
Mapas de grade
Ciência da Computação
title_short Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks
title_full Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks
title_fullStr Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks
title_full_unstemmed Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks
title_sort Generating road grid maps and path plans for self-driving cars using laser remission data and deep neural networks
author Carneiro, Raphael Vivacqua
author_facet Carneiro, Raphael Vivacqua
author_role author
dc.contributor.none.fl_str_mv Souza, Alberto Ferreira de
https://orcid.org/0000-0003-1561-8447
Baduê, Claudine Santos
Rauber, Thomas Walter
Komati, Karin Satie
Andrade, Mariella Berger
dc.contributor.author.fl_str_mv Carneiro, Raphael Vivacqua
dc.subject.por.fl_str_mv Carros autônomos
Remissão de laser
Mapas de grade
Ciência da Computação
topic Carros autônomos
Remissão de laser
Mapas de grade
Ciência da Computação
description This work proposes the use of deep neural networks (DNN) for solving the problem of inferring the location of drivable lanes of roadways and their relevant properties such as the lane change right-of-way, even if the line markings are poor or absent. This problem is relevant to the operation of self-driving cars which requires precise maps and precise path plans. Our approach to the problem is the use of a DNN for semantic segmentation of LiDAR remission grid maps into road grid maps. Both LiDAR remission grid maps and road grid maps are square matrices in which each cell represents features of a small 2D-squared region of the real world (e.g., 20cm × 20cm). A LiDAR remission grid map cell contains the information about the average intensity of laser reflection remission on the surface of that particular place. A road grid map cell contains the semantic information about whether it belongs to either a drivable lane or a line marking or a non-drivable area. The semantic codes associated with the road map cells contain all information required for building a network of valid paths, which are required for self-driving cars to build their path plans. Our proposal is a novel technique for the automatic building of viable path plans for self-driving cars. In our experiments we use the self-driving car of UFES, IARA (Intelligent Autonomous Robotic Automobile). We built datasets of manually marked road lanes and use them to train and validate the DNNs used for the semantic segmentation and the generation of road grid maps from laser remission grid maps. The results achieved an average segmentation accuracy of 94.7% in cases of interest. The path plans automatically generated from the inferred road grid maps were tested in the real world using IARA and has shown performance equivalent to that of manually generated path plans.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-12T23:39:45Z
2024-12-12T23:39:45Z
2024-09-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/18224
url http://repositorio.ufes.br/handle/10/18224
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Ciência da Computação
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Ciência da Computação
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834478788031807488