Techniques for construction of phylogenetic trees

Detalhes bibliográficos
Autor(a) principal: Gerardo ValdÃso Rodrigues Viana
Data de Publicação: 2007
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1353
Resumo: Phylogenetic tree structures express similarities, ancestrality, and relationships between species or group of species, and are also known as evolutionary trees or phylogenies. Phylogenetic trees have leaves that represent species (taxons), and internal nodes that correspond to hypothetical ancestors of the species. In this thesis we rst present elements necessary to the comprehension of phylogenetic trees systematics, then efcient algorithms to build them will be described. Molecular biology concepts, life evolution, and biological classication are important to the understanding of phylogenies. Phylogenetic information may provide important knowledge to biological research work, such as, organ transplantation from animals, and drug toxicologic tests performed in other species as a precise prediction to its application in human beings. To solve a phylogeny problem implies that a phylogenetic tree must be built from known data about a group of species, according to an optimization criterion. The approach to this problem involves two main steps: the rst refers to the discovery of perfect phylogenies, in the second step, information extracted from perfect phylogenies are used to infer more general ones. The techniques that are used in the second step take advantage of evolutionary hypothesis. The problem becomes NP-hard for a number of interesting hypothesis, what justify the use of inference methods based on heuristics, metaheuristics, and approximative algorithms. The description of an innovative technique based on local search with multiple start over a diversied neighborhood summarizes our contribution to solve the problem. Moreover, we used parallel programming in order to speed up the intensication stage of the search for the optimal solution. More precisely, we developed an efcient algorithm to obtain approximate solutions for a phylogeny problem which infers an optimal phylogenetic tree from characteristics matrices of various species. The designed data structures and the binary data manipulation in some routines accelerate simulation and illustration of the experimentation tests. Well known instances have been used to compare the proposed algorithm results with those previously published. We hope that this work may arise researchers' interest to the topic and contribute to the Bioinformatics area.
id UFC_a2d60b99e752c2c0cffe09580d23cc88
oai_identifier_str oai:www.teses.ufc.br:1188
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTechniques for construction of phylogenetic treesTÃcnicas para construÃÃo de Ãrvores filogenÃticas2007-04-27Fernando Antonio de Carvalho Gomes16359429349http://lattes.cnpq.br/1939983618921649Carlos Eduardo Ferreira09445312880http://lattes.cnpq.br/9284531339856547Tarcisio Haroldo Cavalcante Pequeno01504290372http://dgp.cnpq.br/buscaoperacional/detalhepesq.jsp?pesq=8763487086911020Thalles Barbosa Granjeiro31160166315Nelson Maculan Filho24572098700http://lattes.cnpq.br/4436183480921146Ruy Luiz MilidiÃ12249475091http://lattes.cnpq.br/691801050436264307313411391http://lattes.cnpq.br/6262051397848744Gerardo ValdÃso Rodrigues VianaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃoUFCBRFilogenia, Ãrvores filogenÃticas, biologia computacional, otimizaÃÃo combinatÃria, algoritmos e heurÃsticas.Phylogeny, phylogenetic trees, computational biology, optimization, algorithms and heuristics.CIENCIA DA COMPUTACAOPhylogenetic tree structures express similarities, ancestrality, and relationships between species or group of species, and are also known as evolutionary trees or phylogenies. Phylogenetic trees have leaves that represent species (taxons), and internal nodes that correspond to hypothetical ancestors of the species. In this thesis we rst present elements necessary to the comprehension of phylogenetic trees systematics, then efcient algorithms to build them will be described. Molecular biology concepts, life evolution, and biological classication are important to the understanding of phylogenies. Phylogenetic information may provide important knowledge to biological research work, such as, organ transplantation from animals, and drug toxicologic tests performed in other species as a precise prediction to its application in human beings. To solve a phylogeny problem implies that a phylogenetic tree must be built from known data about a group of species, according to an optimization criterion. The approach to this problem involves two main steps: the rst refers to the discovery of perfect phylogenies, in the second step, information extracted from perfect phylogenies are used to infer more general ones. The techniques that are used in the second step take advantage of evolutionary hypothesis. The problem becomes NP-hard for a number of interesting hypothesis, what justify the use of inference methods based on heuristics, metaheuristics, and approximative algorithms. The description of an innovative technique based on local search with multiple start over a diversied neighborhood summarizes our contribution to solve the problem. Moreover, we used parallel programming in order to speed up the intensication stage of the search for the optimal solution. More precisely, we developed an efcient algorithm to obtain approximate solutions for a phylogeny problem which infers an optimal phylogenetic tree from characteristics matrices of various species. The designed data structures and the binary data manipulation in some routines accelerate simulation and illustration of the experimentation tests. Well known instances have been used to compare the proposed algorithm results with those previously published. We hope that this work may arise researchers' interest to the topic and contribute to the Bioinformatics area.Ãrvores filogenÃticas sÃo estruturas que expressam a similaridade, ancestralidade e relacionamentos entre as espÃcies ou grupo de espÃcies. Conhecidas como Ãrvores evolucionÃrias ou simplesmente filogenias, as Ãrvores filogenÃticas possuem folhas que representam as espÃcies (tÃxons) e nÃs internos que correspondem aos seus ancestrais hipotÃticos. Neste trabalho, alÃm das informaÃÃes necessÃrias para o entendimento de toda a sistemÃtica filogenÃtica, sÃo apresentadas tÃcnicas algorÃtmicas para construÃÃo destas Ãrvores. Os conceitos bÃsicos de biologia molecular, evoluÃÃo da vida e classificaÃÃo biolÃgica, aqui descritos, permitem compreender o que à uma Filogenia e qual sua importÃncia para a Biologia. As informaÃÃes filogenÃticas fornecem,por exemplo, subsÃdios importantes para decisÃes relativas aos transplantes de ÃrgÃos ou tecidos de outras espÃcies para o homem e para que testes de reaÃÃo imunolÃgica ou de toxicidade sejam feitos antes em outros sistemas biolÃgicos similares ao ser humano. Resolver um Problema de Filogenia corresponde à construÃÃo de uma Ãrvore filogenÃtica a partir de dados conhecidos sobre as espÃcies em estudo, obedecendo a algum critÃrio de otimizaÃÃo. A abordagem dada a esse problema envolve duas etapas, a primeira, referente aos casos em que as filogenias sÃo perfeitas cujos procedimentos desenvolvidos serÃo utilizados na segunda etapa, quando deve ser criada uma tÃcnica de inferÃncia para a filogenia num caso geral. Essas tÃcnicas consideram de forma peculiar as hipÃteses sobre o processo de evoluÃÃo. Para muitas hipÃteses de interesse o problema se torna NP-DifÃcil, justificando-se o uso de mÃtodos de inferÃncia atravÃs de heurÃsticas, meta-heurÃsticas e algoritmos aproximativos. Nossa contribuiÃÃo neste trabalho consiste em apresentar uma tÃcnica de resoluÃÃo desse problema baseada em buscas locais com partidas mÃltiplas em vizinhanÃas diversificadas. Foi utilizada a programaÃÃo paralela para minimizar o tempo de execuÃÃo no processo de intensificaÃÃo da busca pela soluÃÃo Ãtima do problema. Desta forma, desenvolvemos um algoritmo para obter soluÃÃes aproximadas para um Problema da Filogenia, no caso, para inferir, a partir de matrizes de caracterÃsticas de vÃrias espÃcies, uma Ãrvore filogenÃtica que mais se aproxima da histÃria de sua evoluÃÃo. Uma estrutura de dados escolhida adequadamente aliada à manipulaÃÃo de dados em binÃrio em algumas rotinas facilitaram a simulaÃÃo e ilustraÃÃo dos testes realizados. InstÃncias com resultados conhecidos na literatura foram utilizadas para comprovar a performance do algoritmo. Esperamos com este trabalho despertar o interesse dos pesquisadores da Ãrea de ComputaÃÃo, consolidando, assim, o crescimento da BioinformÃtica. FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1353application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:14:19Zmail@mail.com -
dc.title.en.fl_str_mv Techniques for construction of phylogenetic trees
dc.title.alternative.pt.fl_str_mv TÃcnicas para construÃÃo de Ãrvores filogenÃticas
title Techniques for construction of phylogenetic trees
spellingShingle Techniques for construction of phylogenetic trees
Gerardo ValdÃso Rodrigues Viana
Filogenia, Ãrvores filogenÃticas, biologia computacional, otimizaÃÃo combinatÃria, algoritmos e heurÃsticas.
Phylogeny, phylogenetic trees, computational biology, optimization, algorithms and heuristics.
CIENCIA DA COMPUTACAO
title_short Techniques for construction of phylogenetic trees
title_full Techniques for construction of phylogenetic trees
title_fullStr Techniques for construction of phylogenetic trees
title_full_unstemmed Techniques for construction of phylogenetic trees
title_sort Techniques for construction of phylogenetic trees
author Gerardo ValdÃso Rodrigues Viana
author_facet Gerardo ValdÃso Rodrigues Viana
author_role author
dc.contributor.advisor1.fl_str_mv Fernando Antonio de Carvalho Gomes
dc.contributor.advisor1ID.fl_str_mv 16359429349
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1939983618921649
dc.contributor.advisor-co1.fl_str_mv Carlos Eduardo Ferreira
dc.contributor.advisor-co1ID.fl_str_mv 09445312880
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9284531339856547
dc.contributor.referee1.fl_str_mv Tarcisio Haroldo Cavalcante Pequeno
dc.contributor.referee1ID.fl_str_mv 01504290372
dc.contributor.referee1Lattes.fl_str_mv http://dgp.cnpq.br/buscaoperacional/detalhepesq.jsp?pesq=8763487086911020
dc.contributor.referee2.fl_str_mv Thalles Barbosa Granjeiro
dc.contributor.referee2ID.fl_str_mv 31160166315
dc.contributor.referee3.fl_str_mv Nelson Maculan Filho
dc.contributor.referee3ID.fl_str_mv 24572098700
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4436183480921146
dc.contributor.referee4.fl_str_mv Ruy Luiz MilidiÃ
dc.contributor.referee4ID.fl_str_mv 12249475091
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/6918010504362643
dc.contributor.authorID.fl_str_mv 07313411391
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6262051397848744
dc.contributor.author.fl_str_mv Gerardo ValdÃso Rodrigues Viana
contributor_str_mv Fernando Antonio de Carvalho Gomes
Carlos Eduardo Ferreira
Tarcisio Haroldo Cavalcante Pequeno
Thalles Barbosa Granjeiro
Nelson Maculan Filho
Ruy Luiz MilidiÃ
dc.subject.por.fl_str_mv Filogenia, Ãrvores filogenÃticas, biologia computacional, otimizaÃÃo combinatÃria, algoritmos e heurÃsticas.
topic Filogenia, Ãrvores filogenÃticas, biologia computacional, otimizaÃÃo combinatÃria, algoritmos e heurÃsticas.
Phylogeny, phylogenetic trees, computational biology, optimization, algorithms and heuristics.
CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Phylogeny, phylogenetic trees, computational biology, optimization, algorithms and heuristics.
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO
dc.description.sponsorship.fl_txt_mv FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv Phylogenetic tree structures express similarities, ancestrality, and relationships between species or group of species, and are also known as evolutionary trees or phylogenies. Phylogenetic trees have leaves that represent species (taxons), and internal nodes that correspond to hypothetical ancestors of the species. In this thesis we rst present elements necessary to the comprehension of phylogenetic trees systematics, then efcient algorithms to build them will be described. Molecular biology concepts, life evolution, and biological classication are important to the understanding of phylogenies. Phylogenetic information may provide important knowledge to biological research work, such as, organ transplantation from animals, and drug toxicologic tests performed in other species as a precise prediction to its application in human beings. To solve a phylogeny problem implies that a phylogenetic tree must be built from known data about a group of species, according to an optimization criterion. The approach to this problem involves two main steps: the rst refers to the discovery of perfect phylogenies, in the second step, information extracted from perfect phylogenies are used to infer more general ones. The techniques that are used in the second step take advantage of evolutionary hypothesis. The problem becomes NP-hard for a number of interesting hypothesis, what justify the use of inference methods based on heuristics, metaheuristics, and approximative algorithms. The description of an innovative technique based on local search with multiple start over a diversied neighborhood summarizes our contribution to solve the problem. Moreover, we used parallel programming in order to speed up the intensication stage of the search for the optimal solution. More precisely, we developed an efcient algorithm to obtain approximate solutions for a phylogeny problem which infers an optimal phylogenetic tree from characteristics matrices of various species. The designed data structures and the binary data manipulation in some routines accelerate simulation and illustration of the experimentation tests. Well known instances have been used to compare the proposed algorithm results with those previously published. We hope that this work may arise researchers' interest to the topic and contribute to the Bioinformatics area.
Ãrvores filogenÃticas sÃo estruturas que expressam a similaridade, ancestralidade e relacionamentos entre as espÃcies ou grupo de espÃcies. Conhecidas como Ãrvores evolucionÃrias ou simplesmente filogenias, as Ãrvores filogenÃticas possuem folhas que representam as espÃcies (tÃxons) e nÃs internos que correspondem aos seus ancestrais hipotÃticos. Neste trabalho, alÃm das informaÃÃes necessÃrias para o entendimento de toda a sistemÃtica filogenÃtica, sÃo apresentadas tÃcnicas algorÃtmicas para construÃÃo destas Ãrvores. Os conceitos bÃsicos de biologia molecular, evoluÃÃo da vida e classificaÃÃo biolÃgica, aqui descritos, permitem compreender o que à uma Filogenia e qual sua importÃncia para a Biologia. As informaÃÃes filogenÃticas fornecem,por exemplo, subsÃdios importantes para decisÃes relativas aos transplantes de ÃrgÃos ou tecidos de outras espÃcies para o homem e para que testes de reaÃÃo imunolÃgica ou de toxicidade sejam feitos antes em outros sistemas biolÃgicos similares ao ser humano. Resolver um Problema de Filogenia corresponde à construÃÃo de uma Ãrvore filogenÃtica a partir de dados conhecidos sobre as espÃcies em estudo, obedecendo a algum critÃrio de otimizaÃÃo. A abordagem dada a esse problema envolve duas etapas, a primeira, referente aos casos em que as filogenias sÃo perfeitas cujos procedimentos desenvolvidos serÃo utilizados na segunda etapa, quando deve ser criada uma tÃcnica de inferÃncia para a filogenia num caso geral. Essas tÃcnicas consideram de forma peculiar as hipÃteses sobre o processo de evoluÃÃo. Para muitas hipÃteses de interesse o problema se torna NP-DifÃcil, justificando-se o uso de mÃtodos de inferÃncia atravÃs de heurÃsticas, meta-heurÃsticas e algoritmos aproximativos. Nossa contribuiÃÃo neste trabalho consiste em apresentar uma tÃcnica de resoluÃÃo desse problema baseada em buscas locais com partidas mÃltiplas em vizinhanÃas diversificadas. Foi utilizada a programaÃÃo paralela para minimizar o tempo de execuÃÃo no processo de intensificaÃÃo da busca pela soluÃÃo Ãtima do problema. Desta forma, desenvolvemos um algoritmo para obter soluÃÃes aproximadas para um Problema da Filogenia, no caso, para inferir, a partir de matrizes de caracterÃsticas de vÃrias espÃcies, uma Ãrvore filogenÃtica que mais se aproxima da histÃria de sua evoluÃÃo. Uma estrutura de dados escolhida adequadamente aliada à manipulaÃÃo de dados em binÃrio em algumas rotinas facilitaram a simulaÃÃo e ilustraÃÃo dos testes realizados. InstÃncias com resultados conhecidos na literatura foram utilizadas para comprovar a performance do algoritmo. Esperamos com este trabalho despertar o interesse dos pesquisadores da Ãrea de ComputaÃÃo, consolidando, assim, o crescimento da BioinformÃtica.
description Phylogenetic tree structures express similarities, ancestrality, and relationships between species or group of species, and are also known as evolutionary trees or phylogenies. Phylogenetic trees have leaves that represent species (taxons), and internal nodes that correspond to hypothetical ancestors of the species. In this thesis we rst present elements necessary to the comprehension of phylogenetic trees systematics, then efcient algorithms to build them will be described. Molecular biology concepts, life evolution, and biological classication are important to the understanding of phylogenies. Phylogenetic information may provide important knowledge to biological research work, such as, organ transplantation from animals, and drug toxicologic tests performed in other species as a precise prediction to its application in human beings. To solve a phylogeny problem implies that a phylogenetic tree must be built from known data about a group of species, according to an optimization criterion. The approach to this problem involves two main steps: the rst refers to the discovery of perfect phylogenies, in the second step, information extracted from perfect phylogenies are used to infer more general ones. The techniques that are used in the second step take advantage of evolutionary hypothesis. The problem becomes NP-hard for a number of interesting hypothesis, what justify the use of inference methods based on heuristics, metaheuristics, and approximative algorithms. The description of an innovative technique based on local search with multiple start over a diversied neighborhood summarizes our contribution to solve the problem. Moreover, we used parallel programming in order to speed up the intensication stage of the search for the optimal solution. More precisely, we developed an efcient algorithm to obtain approximate solutions for a phylogeny problem which infers an optimal phylogenetic tree from characteristics matrices of various species. The designed data structures and the binary data manipulation in some routines accelerate simulation and illustration of the experimentation tests. Well known instances have been used to compare the proposed algorithm results with those previously published. We hope that this work may arise researchers' interest to the topic and contribute to the Bioinformatics area.
publishDate 2007
dc.date.issued.fl_str_mv 2007-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1353
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1353
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃo
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295118464122880