Artificial neural network and Stockwell transform for fault location in transmission lines
| Main Author: | |
|---|---|
| Publication Date: | 2015 |
| Format: | Master thesis |
| Language: | por |
| Source: | Biblioteca Digital de Teses e Dissertações da UFC |
| Download full: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15403 |
Summary: | This paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal. |
| id |
UFC_1c62ee50b37269ab63b28d647494cd13 |
|---|---|
| oai_identifier_str |
oai:www.teses.ufc.br:10148 |
| network_acronym_str |
UFC |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
| spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisArtificial neural network and Stockwell transform for fault location in transmission linesUso de redes neurais artificiais e transformada de Stockwell na localizaÃÃo de faltas em linhas de transmissÃo2015-06-26Arthur PlÃnio de Souza Braga42395194387http://lattes.cnpq.br/1473823107869382 Ruth Pastora Saraiva LeÃo10483683353http://lattes.cnpq.br/8551048513174462 OtacÃlio da Mota Almeida26310112368http://lattes.cnpq.br/1721353262824215 Hermes Manoel GalvÃo Castelo Branco9590821839103386859364http://lattes.cnpq.br/165744436227990Saulo Cunha AraÃjo de SouzaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia ElÃtricaUFCBR Linhas de transmissÃo Redes neurais artificiais Transformada de Stockwell Teoria das ondas viajantes LocalizaÃÃo de faltas Transmission lines Artificial neural network Stockwell transform Travelling waves theory Fault locationSISTEMAS ELETRICOS DE POTENCIAThis paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal.Este trabalho apresenta um mÃtodo automÃtico de localizaÃÃo de faltas em linhas de transmissÃo baseado na Teoria das Ondas Viajantes (TOV) utilizando a Transformada de Stockwell (TS) para determinaÃÃo dos tempos de propagaÃÃo das ondas viajantes e da frequÃncia dominante dos sinais transitÃrios gerados pelas situaÃÃes de falta. O mÃtodo considera o caso em que nÃo hà comunicaÃÃo entre terminais ou hà perda de sincronismo entre os equipamentos responsÃveis pela estimaÃÃo da localizaÃÃo das faltas utilizando, portanto, dados provenientes de apenas um terminal. Consideram-se faltas monofÃsicas envolvendo uma das fases e a terra, as quais ocorrem na primeira metade de uma linha de transmissÃo de parÃmetros desconhecidos. Observa-se que o mÃtodo (i) nÃo se mostrou sensÃvel a variaÃÃes de resistÃncia de falta e Ãngulo de incidÃncia e (ii) os resultados obtidos apresentam erros entre 0,10% e 5,82% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento. Para a melhoria da precisÃo na estimaÃÃo da localizaÃÃo das faltas foi projetada uma Rede Neural Artificial (RNA) do tipo MLP (Multi-Layer Perceptron), treinada a partir de caracterÃsticas dos sinais faltosos extraÃdas atravÃs da TS. Foram utilizados os sinais trifÃsicos de tensÃo amostrados na frequÃncia de 200kHz gerados a partir de simulaÃÃes no software ATP (Alternative Transiente Program), no qual foram realizadas 1280 simulaÃÃes explorando diversas localizaÃÃes e resistÃncias de falta e Ãngulo de incidÃncia. O mÃtodo foi aplicado utilizando o software MATLABÂ. De acordo com os resultados obtidos, a combinaÃÃo da TS e RNA projetada apresentou melhores resultados do que a aplicaÃÃo da TS e TOV, destacando-se na estimaÃÃo da localizaÃÃo de faltas que ocorreram a maiores distÃncias do terminal de monitoramento, com erros entre 0,02% e 1,56% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento.FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15403application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:28:34Zmail@mail.com - |
| dc.title.en.fl_str_mv |
Artificial neural network and Stockwell transform for fault location in transmission lines |
| dc.title.alternative.pt.fl_str_mv |
Uso de redes neurais artificiais e transformada de Stockwell na localizaÃÃo de faltas em linhas de transmissÃo |
| title |
Artificial neural network and Stockwell transform for fault location in transmission lines |
| spellingShingle |
Artificial neural network and Stockwell transform for fault location in transmission lines Saulo Cunha AraÃjo de Souza Linhas de transmissÃo Redes neurais artificiais Transformada de Stockwell Teoria das ondas viajantes LocalizaÃÃo de faltas Transmission lines Artificial neural network Stockwell transform Travelling waves theory Fault location SISTEMAS ELETRICOS DE POTENCIA |
| title_short |
Artificial neural network and Stockwell transform for fault location in transmission lines |
| title_full |
Artificial neural network and Stockwell transform for fault location in transmission lines |
| title_fullStr |
Artificial neural network and Stockwell transform for fault location in transmission lines |
| title_full_unstemmed |
Artificial neural network and Stockwell transform for fault location in transmission lines |
| title_sort |
Artificial neural network and Stockwell transform for fault location in transmission lines |
| author |
Saulo Cunha AraÃjo de Souza |
| author_facet |
Saulo Cunha AraÃjo de Souza |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Arthur PlÃnio de Souza Braga |
| dc.contributor.advisor1ID.fl_str_mv |
42395194387 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1473823107869382 |
| dc.contributor.advisor-co1.fl_str_mv |
Ruth Pastora Saraiva LeÃo |
| dc.contributor.advisor-co1ID.fl_str_mv |
10483683353 |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/8551048513174462 |
| dc.contributor.referee1.fl_str_mv |
OtacÃlio da Mota Almeida |
| dc.contributor.referee1ID.fl_str_mv |
26310112368 |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1721353262824215 |
| dc.contributor.referee2.fl_str_mv |
Hermes Manoel GalvÃo Castelo Branco |
| dc.contributor.referee2ID.fl_str_mv |
95908218391 |
| dc.contributor.authorID.fl_str_mv |
03386859364 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/165744436227990 |
| dc.contributor.author.fl_str_mv |
Saulo Cunha AraÃjo de Souza |
| contributor_str_mv |
Arthur PlÃnio de Souza Braga Ruth Pastora Saraiva LeÃo OtacÃlio da Mota Almeida Hermes Manoel GalvÃo Castelo Branco |
| dc.subject.por.fl_str_mv |
Linhas de transmissÃo Redes neurais artificiais Transformada de Stockwell Teoria das ondas viajantes LocalizaÃÃo de faltas |
| topic |
Linhas de transmissÃo Redes neurais artificiais Transformada de Stockwell Teoria das ondas viajantes LocalizaÃÃo de faltas Transmission lines Artificial neural network Stockwell transform Travelling waves theory Fault location SISTEMAS ELETRICOS DE POTENCIA |
| dc.subject.eng.fl_str_mv |
Transmission lines Artificial neural network Stockwell transform Travelling waves theory Fault location |
| dc.subject.cnpq.fl_str_mv |
SISTEMAS ELETRICOS DE POTENCIA |
| dc.description.sponsorship.fl_txt_mv |
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico |
| dc.description.abstract.por.fl_txt_mv |
This paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal. Este trabalho apresenta um mÃtodo automÃtico de localizaÃÃo de faltas em linhas de transmissÃo baseado na Teoria das Ondas Viajantes (TOV) utilizando a Transformada de Stockwell (TS) para determinaÃÃo dos tempos de propagaÃÃo das ondas viajantes e da frequÃncia dominante dos sinais transitÃrios gerados pelas situaÃÃes de falta. O mÃtodo considera o caso em que nÃo hà comunicaÃÃo entre terminais ou hà perda de sincronismo entre os equipamentos responsÃveis pela estimaÃÃo da localizaÃÃo das faltas utilizando, portanto, dados provenientes de apenas um terminal. Consideram-se faltas monofÃsicas envolvendo uma das fases e a terra, as quais ocorrem na primeira metade de uma linha de transmissÃo de parÃmetros desconhecidos. Observa-se que o mÃtodo (i) nÃo se mostrou sensÃvel a variaÃÃes de resistÃncia de falta e Ãngulo de incidÃncia e (ii) os resultados obtidos apresentam erros entre 0,10% e 5,82% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento. Para a melhoria da precisÃo na estimaÃÃo da localizaÃÃo das faltas foi projetada uma Rede Neural Artificial (RNA) do tipo MLP (Multi-Layer Perceptron), treinada a partir de caracterÃsticas dos sinais faltosos extraÃdas atravÃs da TS. Foram utilizados os sinais trifÃsicos de tensÃo amostrados na frequÃncia de 200kHz gerados a partir de simulaÃÃes no software ATP (Alternative Transiente Program), no qual foram realizadas 1280 simulaÃÃes explorando diversas localizaÃÃes e resistÃncias de falta e Ãngulo de incidÃncia. O mÃtodo foi aplicado utilizando o software MATLABÂ. De acordo com os resultados obtidos, a combinaÃÃo da TS e RNA projetada apresentou melhores resultados do que a aplicaÃÃo da TS e TOV, destacando-se na estimaÃÃo da localizaÃÃo de faltas que ocorreram a maiores distÃncias do terminal de monitoramento, com erros entre 0,02% e 1,56% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento. |
| description |
This paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal. |
| publishDate |
2015 |
| dc.date.issued.fl_str_mv |
2015-06-26 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| status_str |
publishedVersion |
| format |
masterThesis |
| dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15403 |
| url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15403 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
| dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Engenharia ElÃtrica |
| dc.publisher.initials.fl_str_mv |
UFC |
| dc.publisher.country.fl_str_mv |
BR |
| publisher.none.fl_str_mv |
Universidade Federal do Cearà |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
| collection |
Biblioteca Digital de Teses e Dissertações da UFC |
| instname_str |
Universidade Federal do Ceará |
| instacron_str |
UFC |
| institution |
UFC |
| repository.name.fl_str_mv |
-
|
| repository.mail.fl_str_mv |
mail@mail.com |
| _version_ |
1643295210423189504 |