Artificial neural network and Stockwell transform for fault location in transmission lines

Bibliographic Details
Main Author: Saulo Cunha AraÃjo de Souza
Publication Date: 2015
Format: Master thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações da UFC
Download full: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15403
Summary: This paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal.
id UFC_1c62ee50b37269ab63b28d647494cd13
oai_identifier_str oai:www.teses.ufc.br:10148
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisArtificial neural network and Stockwell transform for fault location in transmission linesUso de redes neurais artificiais e transformada de Stockwell na localizaÃÃo de faltas em linhas de transmissÃo2015-06-26Arthur PlÃnio de Souza Braga42395194387http://lattes.cnpq.br/1473823107869382 Ruth Pastora Saraiva LeÃo10483683353http://lattes.cnpq.br/8551048513174462 OtacÃlio da Mota Almeida26310112368http://lattes.cnpq.br/1721353262824215 Hermes Manoel GalvÃo Castelo Branco9590821839103386859364http://lattes.cnpq.br/165744436227990Saulo Cunha AraÃjo de SouzaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia ElÃtricaUFCBR Linhas de transmissÃo Redes neurais artificiais Transformada de Stockwell Teoria das ondas viajantes LocalizaÃÃo de faltas Transmission lines Artificial neural network Stockwell transform Travelling waves theory Fault locationSISTEMAS ELETRICOS DE POTENCIAThis paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal.Este trabalho apresenta um mÃtodo automÃtico de localizaÃÃo de faltas em linhas de transmissÃo baseado na Teoria das Ondas Viajantes (TOV) utilizando a Transformada de Stockwell (TS) para determinaÃÃo dos tempos de propagaÃÃo das ondas viajantes e da frequÃncia dominante dos sinais transitÃrios gerados pelas situaÃÃes de falta. O mÃtodo considera o caso em que nÃo hà comunicaÃÃo entre terminais ou hà perda de sincronismo entre os equipamentos responsÃveis pela estimaÃÃo da localizaÃÃo das faltas utilizando, portanto, dados provenientes de apenas um terminal. Consideram-se faltas monofÃsicas envolvendo uma das fases e a terra, as quais ocorrem na primeira metade de uma linha de transmissÃo de parÃmetros desconhecidos. Observa-se que o mÃtodo (i) nÃo se mostrou sensÃvel a variaÃÃes de resistÃncia de falta e Ãngulo de incidÃncia e (ii) os resultados obtidos apresentam erros entre 0,10% e 5,82% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento. Para a melhoria da precisÃo na estimaÃÃo da localizaÃÃo das faltas foi projetada uma Rede Neural Artificial (RNA) do tipo MLP (Multi-Layer Perceptron), treinada a partir de caracterÃsticas dos sinais faltosos extraÃdas atravÃs da TS. Foram utilizados os sinais trifÃsicos de tensÃo amostrados na frequÃncia de 200kHz gerados a partir de simulaÃÃes no software ATP (Alternative Transiente Program), no qual foram realizadas 1280 simulaÃÃes explorando diversas localizaÃÃes e resistÃncias de falta e Ãngulo de incidÃncia. O mÃtodo foi aplicado utilizando o software MATLABÂ. De acordo com os resultados obtidos, a combinaÃÃo da TS e RNA projetada apresentou melhores resultados do que a aplicaÃÃo da TS e TOV, destacando-se na estimaÃÃo da localizaÃÃo de faltas que ocorreram a maiores distÃncias do terminal de monitoramento, com erros entre 0,02% e 1,56% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento.FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15403application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:28:34Zmail@mail.com -
dc.title.en.fl_str_mv Artificial neural network and Stockwell transform for fault location in transmission lines
dc.title.alternative.pt.fl_str_mv Uso de redes neurais artificiais e transformada de Stockwell na localizaÃÃo de faltas em linhas de transmissÃo
title Artificial neural network and Stockwell transform for fault location in transmission lines
spellingShingle Artificial neural network and Stockwell transform for fault location in transmission lines
Saulo Cunha AraÃjo de Souza
Linhas de transmissÃo
Redes neurais artificiais
Transformada de Stockwell
Teoria das ondas viajantes
LocalizaÃÃo de faltas
Transmission lines
Artificial neural network
Stockwell transform
Travelling waves theory
Fault location
SISTEMAS ELETRICOS DE POTENCIA
title_short Artificial neural network and Stockwell transform for fault location in transmission lines
title_full Artificial neural network and Stockwell transform for fault location in transmission lines
title_fullStr Artificial neural network and Stockwell transform for fault location in transmission lines
title_full_unstemmed Artificial neural network and Stockwell transform for fault location in transmission lines
title_sort Artificial neural network and Stockwell transform for fault location in transmission lines
author Saulo Cunha AraÃjo de Souza
author_facet Saulo Cunha AraÃjo de Souza
author_role author
dc.contributor.advisor1.fl_str_mv Arthur PlÃnio de Souza Braga
dc.contributor.advisor1ID.fl_str_mv 42395194387
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1473823107869382
dc.contributor.advisor-co1.fl_str_mv Ruth Pastora Saraiva LeÃo
dc.contributor.advisor-co1ID.fl_str_mv 10483683353
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8551048513174462
dc.contributor.referee1.fl_str_mv OtacÃlio da Mota Almeida
dc.contributor.referee1ID.fl_str_mv 26310112368
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1721353262824215
dc.contributor.referee2.fl_str_mv Hermes Manoel GalvÃo Castelo Branco
dc.contributor.referee2ID.fl_str_mv 95908218391
dc.contributor.authorID.fl_str_mv 03386859364
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/165744436227990
dc.contributor.author.fl_str_mv Saulo Cunha AraÃjo de Souza
contributor_str_mv Arthur PlÃnio de Souza Braga
Ruth Pastora Saraiva LeÃo
OtacÃlio da Mota Almeida
Hermes Manoel GalvÃo Castelo Branco
dc.subject.por.fl_str_mv Linhas de transmissÃo
Redes neurais artificiais
Transformada de Stockwell
Teoria das ondas viajantes
LocalizaÃÃo de faltas
topic Linhas de transmissÃo
Redes neurais artificiais
Transformada de Stockwell
Teoria das ondas viajantes
LocalizaÃÃo de faltas
Transmission lines
Artificial neural network
Stockwell transform
Travelling waves theory
Fault location
SISTEMAS ELETRICOS DE POTENCIA
dc.subject.eng.fl_str_mv Transmission lines
Artificial neural network
Stockwell transform
Travelling waves theory
Fault location
dc.subject.cnpq.fl_str_mv SISTEMAS ELETRICOS DE POTENCIA
dc.description.sponsorship.fl_txt_mv FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv This paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal.
Este trabalho apresenta um mÃtodo automÃtico de localizaÃÃo de faltas em linhas de transmissÃo baseado na Teoria das Ondas Viajantes (TOV) utilizando a Transformada de Stockwell (TS) para determinaÃÃo dos tempos de propagaÃÃo das ondas viajantes e da frequÃncia dominante dos sinais transitÃrios gerados pelas situaÃÃes de falta. O mÃtodo considera o caso em que nÃo hà comunicaÃÃo entre terminais ou hà perda de sincronismo entre os equipamentos responsÃveis pela estimaÃÃo da localizaÃÃo das faltas utilizando, portanto, dados provenientes de apenas um terminal. Consideram-se faltas monofÃsicas envolvendo uma das fases e a terra, as quais ocorrem na primeira metade de uma linha de transmissÃo de parÃmetros desconhecidos. Observa-se que o mÃtodo (i) nÃo se mostrou sensÃvel a variaÃÃes de resistÃncia de falta e Ãngulo de incidÃncia e (ii) os resultados obtidos apresentam erros entre 0,10% e 5,82% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento. Para a melhoria da precisÃo na estimaÃÃo da localizaÃÃo das faltas foi projetada uma Rede Neural Artificial (RNA) do tipo MLP (Multi-Layer Perceptron), treinada a partir de caracterÃsticas dos sinais faltosos extraÃdas atravÃs da TS. Foram utilizados os sinais trifÃsicos de tensÃo amostrados na frequÃncia de 200kHz gerados a partir de simulaÃÃes no software ATP (Alternative Transiente Program), no qual foram realizadas 1280 simulaÃÃes explorando diversas localizaÃÃes e resistÃncias de falta e Ãngulo de incidÃncia. O mÃtodo foi aplicado utilizando o software MATLABÂ. De acordo com os resultados obtidos, a combinaÃÃo da TS e RNA projetada apresentou melhores resultados do que a aplicaÃÃo da TS e TOV, destacando-se na estimaÃÃo da localizaÃÃo de faltas que ocorreram a maiores distÃncias do terminal de monitoramento, com erros entre 0,02% e 1,56% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento.
description This paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal.
publishDate 2015
dc.date.issued.fl_str_mv 2015-06-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15403
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15403
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia ElÃtrica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295210423189504