Metaheurística GRASP para o problema de agrupamento de alunos em escolas
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2025 |
| Tipo de documento: | Dissertação |
| Idioma: | por |
| Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Texto Completo: | http://repositorio.ufc.br/handle/riufc/80785 |
Resumo: | The efficient allocation of students to the schools closest to their residences is crucial, considering school capacities and individual student demands.This problem can be seen as a capacitated clustering problem, where schools have different capacities for each grade. Given that this class of problems is NP-hard, developing approximate algorithms is essential for solving medium and large-scale instances. This research proposes and analyzes methods to solve the Students Clustering Problem (SCP). Computational experiments conducted on a set of 120 randomly generated instances demonstrated the necessity of using metaheuristics, as the exact model was unable to obtain integer solutions within a time limit of 300 seconds. To address this limitation, a constructive heuristic and three metaheuristics were implemented: Clustering Search and A-BRKGA, which have been proposed in the literature for related problems, as well as GRASP, developed specifically for this study. The results indicate that GRASP outperformed the other methods, obtaining high-quality solutions in reduced computational times, establishing itself as a viable alternative for solving the SCP. Furthermore, its application in a real-world case study demonstrated the method’s effectiveness in optimizing student allocation and improving the distribution of available school slots. Thus, this research contributes to the development of an efficient approach with the potential to support public policies aimed at educational management. |
| id |
UFC-7_86b3a1f643e1fc856c6f45451a90846f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/80785 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Sá, Nayza MamedePrata, Bruno de Athayde2025-05-08T19:01:31Z2025-05-08T19:01:31Z2025-03-13SÁ, Nayza Mamede. Metaheurística GRASP para o problema de agrupamento de alunos em escolas. 2025. 70 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/80785The efficient allocation of students to the schools closest to their residences is crucial, considering school capacities and individual student demands.This problem can be seen as a capacitated clustering problem, where schools have different capacities for each grade. Given that this class of problems is NP-hard, developing approximate algorithms is essential for solving medium and large-scale instances. This research proposes and analyzes methods to solve the Students Clustering Problem (SCP). Computational experiments conducted on a set of 120 randomly generated instances demonstrated the necessity of using metaheuristics, as the exact model was unable to obtain integer solutions within a time limit of 300 seconds. To address this limitation, a constructive heuristic and three metaheuristics were implemented: Clustering Search and A-BRKGA, which have been proposed in the literature for related problems, as well as GRASP, developed specifically for this study. The results indicate that GRASP outperformed the other methods, obtaining high-quality solutions in reduced computational times, establishing itself as a viable alternative for solving the SCP. Furthermore, its application in a real-world case study demonstrated the method’s effectiveness in optimizing student allocation and improving the distribution of available school slots. Thus, this research contributes to the development of an efficient approach with the potential to support public policies aimed at educational management.A alocação eficiente dos alunos às escolas mais próximas de suas residências é crucial, considerando as capacidades escolares e as demandas individuais dos alunos. Tal problema pode ser visto como um problema de agrupamento capacitado no qual as escolas possuem capacidades diferentes para cada série. Tendo em vista que esta classe de problemas é NP-difícil, a proposição de algoritmos aproximados, é de suma relevância para a resolução de instâncias de médio e grande porte. Nesta pesquisa, propõe-se e analisa-se métodos para a resolução do Problema de Agrupamento de Alunos em Escolas (Students Clustering Problem - SCP). Experimentos computacionais conduzidos em um conjunto de 120 instâncias geradas aleatoriamente demonstraram a necessidade do uso de metaheurísticas, uma vez que o modelo exato não foi capaz de obter soluções inteiras dentro de um limite de tempo de 300 segundos. Para abordar essa limitação, foram implementadas uma heurística construtiva e três metaheurísticas: Clustering Search e A-BRKGA, propostas na literatura para problemas correlatos, além do GRASP, desenvolvido especificamente para este estudo. Os resultados indicam que o GRASP apresentou desempenho superior, obtendo soluções de alta qualidade em tempos computacionais reduzidos, consolidando-se como uma alternativa viável para a resolução do SCP. Além disso, sua aplicação em um estudo de caso real demonstrou a eficácia do método na otimização da alocação de alunos, resultando na melhoria da distribuição das vagas nas escolas. Dessa forma, esta pesquisa contribui para o desenvolvimento de uma abordagem eficiente, com potencial para apoiar políticas públicas voltadas à gestão educacional.Metaheurística GRASP para o problema de agrupamento de alunos em escolasGRASP metaheuristic for the problem of grouping students in schoolsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOtimização combinatóriaProgramação linear inteiraAnálise por agrupamentoMetaheurística GRASPEstudantes de ensino fundamentalCombinatorial optimizationInteger linear programmingClustering analysisGRASP metaheuristicElementary school studentsCNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/1966662311797648https://orcid.org/0000-0002-3920-089Xhttp://lattes.cnpq.br/99570401646974102025-03ORIGINAL2025_dis_nmsa.pdf2025_dis_nmsa.pdfDissertação Versão Finalapplication/pdf2548533http://repositorio.ufc.br/bitstream/riufc/80785/3/2025_dis_nmsa.pdfb7d751dc6987372f691b1743bf7b9bd4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/80785/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/807852025-05-08 16:01:32.569oai:repositorio.ufc.br:riufc/80785Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-05-08T19:01:32Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Metaheurística GRASP para o problema de agrupamento de alunos em escolas |
| dc.title.en.pt_BR.fl_str_mv |
GRASP metaheuristic for the problem of grouping students in schools |
| title |
Metaheurística GRASP para o problema de agrupamento de alunos em escolas |
| spellingShingle |
Metaheurística GRASP para o problema de agrupamento de alunos em escolas Sá, Nayza Mamede CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA Otimização combinatória Programação linear inteira Análise por agrupamento Metaheurística GRASP Estudantes de ensino fundamental Combinatorial optimization Integer linear programming Clustering analysis GRASP metaheuristic Elementary school students |
| title_short |
Metaheurística GRASP para o problema de agrupamento de alunos em escolas |
| title_full |
Metaheurística GRASP para o problema de agrupamento de alunos em escolas |
| title_fullStr |
Metaheurística GRASP para o problema de agrupamento de alunos em escolas |
| title_full_unstemmed |
Metaheurística GRASP para o problema de agrupamento de alunos em escolas |
| title_sort |
Metaheurística GRASP para o problema de agrupamento de alunos em escolas |
| author |
Sá, Nayza Mamede |
| author_facet |
Sá, Nayza Mamede |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Sá, Nayza Mamede |
| dc.contributor.advisor1.fl_str_mv |
Prata, Bruno de Athayde |
| contributor_str_mv |
Prata, Bruno de Athayde |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA Otimização combinatória Programação linear inteira Análise por agrupamento Metaheurística GRASP Estudantes de ensino fundamental Combinatorial optimization Integer linear programming Clustering analysis GRASP metaheuristic Elementary school students |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Otimização combinatória Programação linear inteira Análise por agrupamento Metaheurística GRASP Estudantes de ensino fundamental |
| dc.subject.en.pt_BR.fl_str_mv |
Combinatorial optimization Integer linear programming Clustering analysis GRASP metaheuristic Elementary school students |
| description |
The efficient allocation of students to the schools closest to their residences is crucial, considering school capacities and individual student demands.This problem can be seen as a capacitated clustering problem, where schools have different capacities for each grade. Given that this class of problems is NP-hard, developing approximate algorithms is essential for solving medium and large-scale instances. This research proposes and analyzes methods to solve the Students Clustering Problem (SCP). Computational experiments conducted on a set of 120 randomly generated instances demonstrated the necessity of using metaheuristics, as the exact model was unable to obtain integer solutions within a time limit of 300 seconds. To address this limitation, a constructive heuristic and three metaheuristics were implemented: Clustering Search and A-BRKGA, which have been proposed in the literature for related problems, as well as GRASP, developed specifically for this study. The results indicate that GRASP outperformed the other methods, obtaining high-quality solutions in reduced computational times, establishing itself as a viable alternative for solving the SCP. Furthermore, its application in a real-world case study demonstrated the method’s effectiveness in optimizing student allocation and improving the distribution of available school slots. Thus, this research contributes to the development of an efficient approach with the potential to support public policies aimed at educational management. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-05-08T19:01:31Z |
| dc.date.available.fl_str_mv |
2025-05-08T19:01:31Z |
| dc.date.issued.fl_str_mv |
2025-03-13 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SÁ, Nayza Mamede. Metaheurística GRASP para o problema de agrupamento de alunos em escolas. 2025. 70 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/80785 |
| identifier_str_mv |
SÁ, Nayza Mamede. Metaheurística GRASP para o problema de agrupamento de alunos em escolas. 2025. 70 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025. |
| url |
http://repositorio.ufc.br/handle/riufc/80785 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/80785/3/2025_dis_nmsa.pdf http://repositorio.ufc.br/bitstream/riufc/80785/4/license.txt |
| bitstream.checksum.fl_str_mv |
b7d751dc6987372f691b1743bf7b9bd4 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792372164853760 |