Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais

Detalhes bibliográficos
Autor(a) principal: Carmo Filho, Gilson Pereira do
Data de Publicação: 2006
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/16138
Resumo: The analysis and solution of physical problems associated with partial differential equations of a subject in which students traditionally find many difficulties. Thus, to assist in the learning process of analytical and numerical methods for solving these equations, developed a computational learning environment by adopting an interdisciplinary approach involving symbolic computation, foundations of the education and advanced topics of numerical calculation . They used Myers (1971) as the basis of educational content and theory of meaningful learning of Ausubel to organize the structure of this content. Emphasizing aspects of theoretical description and mathematical detail, are presented in three solution methods learning environment for partial differential equations: the analytical method of separation of variables and numerical methods of finite differences in EULER variants and Crank- Nicolson. The environment was implemented in a symbolic computation system and therefore has a symbolic manipulation and graphical display capabilities. This makes it possible for students to develop and use the analytical solution obtained by variable separation method to interpret and analyze, through graphics and animations, the physical phenomenon. The environment also provides the student with the means to calculate the numerical solution interactively, using the finite difference methods of Euler and Crank- Nicolson, visualizing step-by-step function values ​​in the loop and comparing them with the numerical results calculated from the analytical solution. The learning environment also offers resources for student generate charts and graphs to analyze and compare the numerical results obtained by the three methods, adopting as benchmark the solution obtained by the variable separation method. Thus, the learner can access the information in interactive and dynamic character, providing the autonomous learning. As an example of application and in order to illustrate the study of physical-mathematical problems, adopted is the conduction heat transfer problem, which is used to study the process of cooling of electronic circuits. Thus, it is assumed that the heat diffusion in a bar epoxy, initially at a known temperature and cooled suddenly at their ends. The graphs and tables provided by the environment also allow the learner observe critically the bar cooling process, either by viewing the evolution of temperature profiles, or the cooling curve of a point in the spatial domain.
id UFC-7_5d1127da4288b899fe7d94fb78f9dfcb
oai_identifier_str oai:repositorio.ufc.br:riufc/16138
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Carmo Filho, Gilson Pereira doRibeiro, Júlio Wilson2016-04-06T18:47:01Z2016-04-06T18:47:01Z2006CARMO FILHO, G. P. Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais. 2006. 103 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006.http://www.repositorio.ufc.br/handle/riufc/16138The analysis and solution of physical problems associated with partial differential equations of a subject in which students traditionally find many difficulties. Thus, to assist in the learning process of analytical and numerical methods for solving these equations, developed a computational learning environment by adopting an interdisciplinary approach involving symbolic computation, foundations of the education and advanced topics of numerical calculation . They used Myers (1971) as the basis of educational content and theory of meaningful learning of Ausubel to organize the structure of this content. Emphasizing aspects of theoretical description and mathematical detail, are presented in three solution methods learning environment for partial differential equations: the analytical method of separation of variables and numerical methods of finite differences in EULER variants and Crank- Nicolson. The environment was implemented in a symbolic computation system and therefore has a symbolic manipulation and graphical display capabilities. This makes it possible for students to develop and use the analytical solution obtained by variable separation method to interpret and analyze, through graphics and animations, the physical phenomenon. The environment also provides the student with the means to calculate the numerical solution interactively, using the finite difference methods of Euler and Crank- Nicolson, visualizing step-by-step function values ​​in the loop and comparing them with the numerical results calculated from the analytical solution. The learning environment also offers resources for student generate charts and graphs to analyze and compare the numerical results obtained by the three methods, adopting as benchmark the solution obtained by the variable separation method. Thus, the learner can access the information in interactive and dynamic character, providing the autonomous learning. As an example of application and in order to illustrate the study of physical-mathematical problems, adopted is the conduction heat transfer problem, which is used to study the process of cooling of electronic circuits. Thus, it is assumed that the heat diffusion in a bar epoxy, initially at a known temperature and cooled suddenly at their ends. The graphs and tables provided by the environment also allow the learner observe critically the bar cooling process, either by viewing the evolution of temperature profiles, or the cooling curve of a point in the spatial domain.A análise e solução de problemas físicos associados a equações diferenciais parciais de um assunto no qual os alunos tradicionalmente encontram muitas dificuldades. As- sim, para auxiliar no processo de aprendizagem de métodos analíticos e numéricos para resolução dessas equações, desenvolveu-se um ambiente computacional de aprendizagem adotando-se uma abordagem interdisciplinar, envolvendo computação simbólica, funda- mentos da educação e tópicos avançados de cálculo numérico. Utilizaram-se Myers (1971) como base do conteúdo didático e a teoria da aprendizagem significativa de Ausubel para organizar a estruturação deste conteúdo. Enfatizando-se os aspectos da descrição teórica e detalhamento matemático, apresentam-se no ambiente de aprendizagem três métodos de solução para equações diferencias parciais: o método analítico de separação de variáveis e os métodos numéricos de diferenças finitas nas variantes de Ëuler e de Crank-Nicolson. O ambiente foi implementado em um sistema de computação simbólica e, portanto, conta com recursos de manipulação simbólica e visualização gráfica. Isto torna possível ao aluno desenvolver e utilizar a solução analítica, obtida pelo método de separação de varíaveis, para interpretar e analisar, através de gráficos e animações, o fenômeno físico em questão. O ambiente também proporciona ao aluno meios de se calcular a solução numérica interativamente, através dos métodos de diferenças finitas de Euler e Crank- Nicolson, visualizando-se passo-a-passo os valores da função na malha e comparando-os com os resultados numéricos calculados a partir da solução analítica. O ambiente de aprendizagem também oferece recursos para que aluno gere tabelas e gráficos para analisar e comparar os resultados numéricos obtidos pelos três métodos, adotando-se como benchmark a solução obtida pelo método de separação de varíaveis. Dessa forma, o aprendiz poderá acessar a informação em caráter interativo e dinâmico, propiciando o aprendizado autônomo. Como exemplo de aplicação e visando-se ilustrar o estudo de problemas físico-matemáticos, adota-se o problema de transferência de calor por condução, que é utilizado para se estudar o processo do resfriamento de circuitos eletrônicos. Assim, assume-se a difusão de calor em uma barra de epoxy, inicialmente a uma temperatura conhecida e resfriada subitamente em suas extremidades. Os gráficos e tabelas disponibilizados pelo ambiente também permitem que o aprendiz observe de forma crítica o processo de resfriamento da barra, quer através da visualização da evolução dos perfis de temperatura, ou pela curva de resfriamento de um ponto do domínio espacial.TeleinformáticaAmbiente virtualEnsino - MetodologiaUm ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciaisAn computational environment of learning for methods of resolution partial differentials equationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2006_dis_gpcarmofilho.pdf2006_dis_gpcarmofilho.pdfapplication/pdf2216487http://repositorio.ufc.br/bitstream/riufc/16138/1/2006_dis_gpcarmofilho.pdfa900f5e78a4fa953f0a49c2be7628447MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/16138/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/161382021-10-28 16:24:59.826oai:repositorio.ufc.br:riufc/16138w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-10-28T19:24:59Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais
dc.title.en.pt_BR.fl_str_mv An computational environment of learning for methods of resolution partial differentials equations
title Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais
spellingShingle Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais
Carmo Filho, Gilson Pereira do
Teleinformática
Ambiente virtual
Ensino - Metodologia
title_short Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais
title_full Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais
title_fullStr Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais
title_full_unstemmed Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais
title_sort Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais
author Carmo Filho, Gilson Pereira do
author_facet Carmo Filho, Gilson Pereira do
author_role author
dc.contributor.author.fl_str_mv Carmo Filho, Gilson Pereira do
dc.contributor.advisor1.fl_str_mv Ribeiro, Júlio Wilson
contributor_str_mv Ribeiro, Júlio Wilson
dc.subject.por.fl_str_mv Teleinformática
Ambiente virtual
Ensino - Metodologia
topic Teleinformática
Ambiente virtual
Ensino - Metodologia
description The analysis and solution of physical problems associated with partial differential equations of a subject in which students traditionally find many difficulties. Thus, to assist in the learning process of analytical and numerical methods for solving these equations, developed a computational learning environment by adopting an interdisciplinary approach involving symbolic computation, foundations of the education and advanced topics of numerical calculation . They used Myers (1971) as the basis of educational content and theory of meaningful learning of Ausubel to organize the structure of this content. Emphasizing aspects of theoretical description and mathematical detail, are presented in three solution methods learning environment for partial differential equations: the analytical method of separation of variables and numerical methods of finite differences in EULER variants and Crank- Nicolson. The environment was implemented in a symbolic computation system and therefore has a symbolic manipulation and graphical display capabilities. This makes it possible for students to develop and use the analytical solution obtained by variable separation method to interpret and analyze, through graphics and animations, the physical phenomenon. The environment also provides the student with the means to calculate the numerical solution interactively, using the finite difference methods of Euler and Crank- Nicolson, visualizing step-by-step function values ​​in the loop and comparing them with the numerical results calculated from the analytical solution. The learning environment also offers resources for student generate charts and graphs to analyze and compare the numerical results obtained by the three methods, adopting as benchmark the solution obtained by the variable separation method. Thus, the learner can access the information in interactive and dynamic character, providing the autonomous learning. As an example of application and in order to illustrate the study of physical-mathematical problems, adopted is the conduction heat transfer problem, which is used to study the process of cooling of electronic circuits. Thus, it is assumed that the heat diffusion in a bar epoxy, initially at a known temperature and cooled suddenly at their ends. The graphs and tables provided by the environment also allow the learner observe critically the bar cooling process, either by viewing the evolution of temperature profiles, or the cooling curve of a point in the spatial domain.
publishDate 2006
dc.date.issued.fl_str_mv 2006
dc.date.accessioned.fl_str_mv 2016-04-06T18:47:01Z
dc.date.available.fl_str_mv 2016-04-06T18:47:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARMO FILHO, G. P. Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais. 2006. 103 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/16138
identifier_str_mv CARMO FILHO, G. P. Um ambiente computacional de aprendizagem para métodos de resolução de equações diferenciais parciais. 2006. 103 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006.
url http://www.repositorio.ufc.br/handle/riufc/16138
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/16138/1/2006_dis_gpcarmofilho.pdf
http://repositorio.ufc.br/bitstream/riufc/16138/2/license.txt
bitstream.checksum.fl_str_mv a900f5e78a4fa953f0a49c2be7628447
8c4401d3d14722a7ca2d07c782a1aab3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792132949016576