Técnicas para construção de árvores filogenéticas

Detalhes bibliográficos
Autor(a) principal: Viana, Gerardo Valdisio Rodrigues
Data de Publicação: 2007
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/18678
Resumo: Phylogenetic tree structures express similarities, ancestrality, and relationships between species or group of species, and are also known as evolutionary trees or phylogenies. Phylogenetic trees have leaves that represent species (taxons), and internal nodes that correspond to hypothetical ancestors of the species. In this thesis we rst present elements necessary to the comprehension of phylogenetic trees systematics, then ef cient algorithms to build them will be described. Molecular biology concepts, life evolution, and biological classi cation are important to the understanding of phylogenies. Phylogenetic information may provide important knowledge to biological research work, such as, organ transplantation from animals, and drug toxicologic tests performed in other species as a precise prediction to its application in human beings. To solve a phylogeny problem implies that a phylogenetic tree must be built from known data about a group of species, according to an optimization criterion. The approach to this problem involves two main steps: the rst refers to the discovery of perfect phylogenies, in the second step, information extracted from perfect phylogenies are used to infer more general ones. The techniques that are used in the second step take advantage of evolutionary hypothesis. The problem becomes NP-hard for a number of interesting hypothesis, what justify the use of inference methods based on heuristics, metaheuristics, and approximative algorithms. The description of an innovative technique based on local search with multiple start over a diversi ed neighborhood summarizes our contribution to solve the problem. Moreover, we used parallel programming in order to speed up the intensi cation stage of the search for the optimal solution. More precisely, we developed an ef cient algorithm to obtain approximate solutions for a phylogeny problem which infers an optimal phylogenetic tree from characteristics matrices of various species. The designed data structures and the binary data manipulation in some routines accelerate simulation and illustration of the experimentation tests. Well known instances have been used to compare the proposed algorithm results with those previously published. We hope that this work may arise researchers' interest to the topic and contribute to the Bioinformatics area.
id UFC-7_3627f44b06430c51934f0b57c526ec1c
oai_identifier_str oai:repositorio.ufc.br:riufc/18678
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Viana, Gerardo Valdisio RodriguesFerreira, Carlos EduardoGomes, Fernando Antonio de Carvalho2016-07-25T11:50:34Z2016-07-25T11:50:34Z2007VIANA, Gerardo Valdisio Rodrigues. Técnicas para construção de árvores filogenéticas. 2007. 203 f. Tese (Doutorado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2007.http://www.repositorio.ufc.br/handle/riufc/18678Phylogenetic tree structures express similarities, ancestrality, and relationships between species or group of species, and are also known as evolutionary trees or phylogenies. Phylogenetic trees have leaves that represent species (taxons), and internal nodes that correspond to hypothetical ancestors of the species. In this thesis we rst present elements necessary to the comprehension of phylogenetic trees systematics, then ef cient algorithms to build them will be described. Molecular biology concepts, life evolution, and biological classi cation are important to the understanding of phylogenies. Phylogenetic information may provide important knowledge to biological research work, such as, organ transplantation from animals, and drug toxicologic tests performed in other species as a precise prediction to its application in human beings. To solve a phylogeny problem implies that a phylogenetic tree must be built from known data about a group of species, according to an optimization criterion. The approach to this problem involves two main steps: the rst refers to the discovery of perfect phylogenies, in the second step, information extracted from perfect phylogenies are used to infer more general ones. The techniques that are used in the second step take advantage of evolutionary hypothesis. The problem becomes NP-hard for a number of interesting hypothesis, what justify the use of inference methods based on heuristics, metaheuristics, and approximative algorithms. The description of an innovative technique based on local search with multiple start over a diversi ed neighborhood summarizes our contribution to solve the problem. Moreover, we used parallel programming in order to speed up the intensi cation stage of the search for the optimal solution. More precisely, we developed an ef cient algorithm to obtain approximate solutions for a phylogeny problem which infers an optimal phylogenetic tree from characteristics matrices of various species. The designed data structures and the binary data manipulation in some routines accelerate simulation and illustration of the experimentation tests. Well known instances have been used to compare the proposed algorithm results with those previously published. We hope that this work may arise researchers' interest to the topic and contribute to the Bioinformatics area.Árvores filogenéticas são estruturas que expressam a similaridade, ancestralidade e relacionamentos entre as espécies ou grupo de espécies. Conhecidas como árvores evolucionárias ou simplesmente filogenias, as árvores filogenéticas possuem folhas que representam as espécies (táxons) e nós internos que correspondem aos seus ancestrais hipotéticos. Neste trabalho, além das informações necessárias para o entendimento de toda a sistemática filogenética, são apresentadas técnicas algorítmicas para construção destas árvores. Os conceitos básicos de biologia molecular, evolução da vida e classificação biológica, aqui descritos, permitem compreender o que é uma Filogenia e qual sua importância para a Biologia. As informações filogenéticas fornecem,por exemplo, subsídios importantes para decisões relativas aos transplantes de órgãos ou tecidos de outras espécies para o homem e para que testes de reação imunológica ou de toxicidade sejam feitos antes em outros sistemas biológicos similares ao ser humano. Resolver um Problema de Filogenia corresponde à construção de uma árvore filogenética a partir de dados conhecidos sobre as espécies em estudo, obedecendo a algum critério de otimização. A abordagem dada a esse problema envolve duas etapas, a primeira, referente aos casos em que as filogenias são perfeitas cujos procedimentos desenvolvidos serão utilizados na segunda etapa, quando deve ser criada uma técnica de inferência para a filogenia num caso geral. Essas técnicas consideram de forma peculiar as hipóteses sobre o processo de evolução. Para muitas hipóteses de interesse o problema se torna NP-Difícil, justificando-se o uso de métodos de inferência através de heurísticas, meta-heurísticas e algoritmos aproximativos. Nossa contribuição neste trabalho consiste em apresentar uma técnica de resolução desse problema baseada em buscas locais com partidas múltiplas em vizinhanças diversificadas. Foi utilizada a programação paralela para minimizar o tempo de execução no processo de intensificação da busca pela solução ótima do problema. Desta forma, desenvolvemos um algoritmo para obter soluções aproximadas para um Problema da Filogenia, no caso, para inferir, a partir de matrizes de características de várias espécies, uma árvore filogenética que mais se aproxima da história de sua evolução. Uma estrutura de dados escolhida adequadamente aliada à manipulação de dados em binário em algumas rotinas facilitaram a simulação e ilustração dos testes realizados. Instâncias com resultados conhecidos na literatura foram utilizadas para comprovar a performance do algoritmo. Esperamos com este trabalho despertar o interesse dos pesquisadores da área de Computação, consolidando, assim, o crescimento da Bioinformática.Ciência da computaçãoFilogeniaPhylogenyÁrvores filogenéticasAlgoritmos e heurísticasBiologia computacionalOtimização combinatóriaPhylogenetic treesAlgorithms and heuristicsComputational biologyOptimization,Técnicas para construção de árvores filogenéticasTechniques for construction of phylogenetic treesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2007_tese_gvrviana.pdf2007_tese_gvrviana.pdfapplication/pdf3571043http://repositorio.ufc.br/bitstream/riufc/18678/1/2007_tese_gvrviana.pdf34853f08d8a8ac37e7c9e07dcf25de25MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/18678/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/186782021-12-14 13:37:30.085oai:repositorio.ufc.br:riufc/18678Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-12-14T16:37:30Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Técnicas para construção de árvores filogenéticas
dc.title.en.pt_BR.fl_str_mv Techniques for construction of phylogenetic trees
title Técnicas para construção de árvores filogenéticas
spellingShingle Técnicas para construção de árvores filogenéticas
Viana, Gerardo Valdisio Rodrigues
Ciência da computação
Filogenia
Phylogeny
Árvores filogenéticas
Algoritmos e heurísticas
Biologia computacional
Otimização combinatória
Phylogenetic trees
Algorithms and heuristics
Computational biology
Optimization,
title_short Técnicas para construção de árvores filogenéticas
title_full Técnicas para construção de árvores filogenéticas
title_fullStr Técnicas para construção de árvores filogenéticas
title_full_unstemmed Técnicas para construção de árvores filogenéticas
title_sort Técnicas para construção de árvores filogenéticas
author Viana, Gerardo Valdisio Rodrigues
author_facet Viana, Gerardo Valdisio Rodrigues
author_role author
dc.contributor.co-advisor.none.fl_str_mv Ferreira, Carlos Eduardo
dc.contributor.author.fl_str_mv Viana, Gerardo Valdisio Rodrigues
dc.contributor.advisor1.fl_str_mv Gomes, Fernando Antonio de Carvalho
contributor_str_mv Gomes, Fernando Antonio de Carvalho
dc.subject.por.fl_str_mv Ciência da computação
Filogenia
Phylogeny
Árvores filogenéticas
Algoritmos e heurísticas
Biologia computacional
Otimização combinatória
Phylogenetic trees
Algorithms and heuristics
Computational biology
Optimization,
topic Ciência da computação
Filogenia
Phylogeny
Árvores filogenéticas
Algoritmos e heurísticas
Biologia computacional
Otimização combinatória
Phylogenetic trees
Algorithms and heuristics
Computational biology
Optimization,
description Phylogenetic tree structures express similarities, ancestrality, and relationships between species or group of species, and are also known as evolutionary trees or phylogenies. Phylogenetic trees have leaves that represent species (taxons), and internal nodes that correspond to hypothetical ancestors of the species. In this thesis we rst present elements necessary to the comprehension of phylogenetic trees systematics, then ef cient algorithms to build them will be described. Molecular biology concepts, life evolution, and biological classi cation are important to the understanding of phylogenies. Phylogenetic information may provide important knowledge to biological research work, such as, organ transplantation from animals, and drug toxicologic tests performed in other species as a precise prediction to its application in human beings. To solve a phylogeny problem implies that a phylogenetic tree must be built from known data about a group of species, according to an optimization criterion. The approach to this problem involves two main steps: the rst refers to the discovery of perfect phylogenies, in the second step, information extracted from perfect phylogenies are used to infer more general ones. The techniques that are used in the second step take advantage of evolutionary hypothesis. The problem becomes NP-hard for a number of interesting hypothesis, what justify the use of inference methods based on heuristics, metaheuristics, and approximative algorithms. The description of an innovative technique based on local search with multiple start over a diversi ed neighborhood summarizes our contribution to solve the problem. Moreover, we used parallel programming in order to speed up the intensi cation stage of the search for the optimal solution. More precisely, we developed an ef cient algorithm to obtain approximate solutions for a phylogeny problem which infers an optimal phylogenetic tree from characteristics matrices of various species. The designed data structures and the binary data manipulation in some routines accelerate simulation and illustration of the experimentation tests. Well known instances have been used to compare the proposed algorithm results with those previously published. We hope that this work may arise researchers' interest to the topic and contribute to the Bioinformatics area.
publishDate 2007
dc.date.issued.fl_str_mv 2007
dc.date.accessioned.fl_str_mv 2016-07-25T11:50:34Z
dc.date.available.fl_str_mv 2016-07-25T11:50:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VIANA, Gerardo Valdisio Rodrigues. Técnicas para construção de árvores filogenéticas. 2007. 203 f. Tese (Doutorado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2007.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/18678
identifier_str_mv VIANA, Gerardo Valdisio Rodrigues. Técnicas para construção de árvores filogenéticas. 2007. 203 f. Tese (Doutorado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2007.
url http://www.repositorio.ufc.br/handle/riufc/18678
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/18678/1/2007_tese_gvrviana.pdf
http://repositorio.ufc.br/bitstream/riufc/18678/2/license.txt
bitstream.checksum.fl_str_mv 34853f08d8a8ac37e7c9e07dcf25de25
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792611360768000