Contributions to the k-color shortest path problem

Bibliographic Details
Main Author: Castelo, Emanuel Elias Silva
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositório Institucional da Universidade Federal do Ceará (UFC)
dARK ID: ark:/83112/001300002pxfc
Download full: http://www.repositorio.ufc.br/handle/riufc/73496
Summary: Given a digraph D = (V,A), where all arcs (i, j) ∈ A have an associated cost d(i, j) ∈ R+ and a color c(i, j), a positive integer k, a source s, and a destination t, the k-Color Shortest Path Problem is an NP-Hard problem that consists in finding the shortest (s,t)-path in D while using at most k distinct colors. We propose valid inequalities for the problem that proved to strengthen the linear relaxation of an existing Integer Linear Programming formulation. An exponential set of valid inequalities defines a new formulation for the problem and is solved by using a branch-and-cut algorithm. We introduce more challenging instances of the problem and present numerical experiments for both benchmark and the new instances. Finally, we evaluate the individual and the collective use of the valid inequalities. Computational results for the proposed ideas and for existing solution approaches for the problem showed the effectiveness of the new inequalities in handling the new instances both in terms of execution times and improving their linear relaxed solutions.
id UFC-7_31e42921e069ddc60bb37f40412dde90
oai_identifier_str oai:repositorio.ufc.br:riufc/73496
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Contributions to the k-color shortest path problemCombinatorial optimizationk-color shortest pathValid inequalitiesGiven a digraph D = (V,A), where all arcs (i, j) ∈ A have an associated cost d(i, j) ∈ R+ and a color c(i, j), a positive integer k, a source s, and a destination t, the k-Color Shortest Path Problem is an NP-Hard problem that consists in finding the shortest (s,t)-path in D while using at most k distinct colors. We propose valid inequalities for the problem that proved to strengthen the linear relaxation of an existing Integer Linear Programming formulation. An exponential set of valid inequalities defines a new formulation for the problem and is solved by using a branch-and-cut algorithm. We introduce more challenging instances of the problem and present numerical experiments for both benchmark and the new instances. Finally, we evaluate the individual and the collective use of the valid inequalities. Computational results for the proposed ideas and for existing solution approaches for the problem showed the effectiveness of the new inequalities in handling the new instances both in terms of execution times and improving their linear relaxed solutions.Dado um digrafo D = (V,A), onde todos os arcos (i, j) ∈ A possuem um custo associado d(i, j) ∈ R+ e uma cor c(i, j), um inteiro positivo k, uma fonte s, e um destino t, o Problema do Caminho Mínimo k-Rotulado é um problema NP-Difícil que consiste em encontrar um (s,t)-caminho de custo mínimo em D usando no máximo k cores distintas. Propomos desigualdades válidas que fortalecem a relaxação linear de uma formulação existente na literatura de Programação Linear Inteira. Propomos ainda uma nova formulação exponencial, que pode ser resolvida por meio de um algoritmo de branch-and-cut. Introduzimos instâncias mais desafiadoras para o problema e apresentamos experimentos numéricos para as benchmark e as novas instâncias. Finalmente, avaliamos diferentes combinações das desigualdades válidas. Resultados computacionais para as ideias propostas e para as abordagens existentes para o problema mostram a eficiência das novas desigualdades em lidar com as novas instâncias ambos em termos de tempo de execução e em proporcionar melhoria nas soluções relaxadas.Andrade, Rafael Castro deSaraiva, Rommel DiasCastelo, Emanuel Elias Silva2023-07-13T14:30:17Z2023-07-13T14:30:17Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCASTELO, Emanuel Elias Silva. Contributions to the k-color shortest path problem. 2023. 54 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2023.http://www.repositorio.ufc.br/handle/riufc/73496ark:/83112/001300002pxfcengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-07-13T14:30:17Zoai:repositorio.ufc.br:riufc/73496Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-07-13T14:30:17Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Contributions to the k-color shortest path problem
title Contributions to the k-color shortest path problem
spellingShingle Contributions to the k-color shortest path problem
Castelo, Emanuel Elias Silva
Combinatorial optimization
k-color shortest path
Valid inequalities
title_short Contributions to the k-color shortest path problem
title_full Contributions to the k-color shortest path problem
title_fullStr Contributions to the k-color shortest path problem
title_full_unstemmed Contributions to the k-color shortest path problem
title_sort Contributions to the k-color shortest path problem
author Castelo, Emanuel Elias Silva
author_facet Castelo, Emanuel Elias Silva
author_role author
dc.contributor.none.fl_str_mv Andrade, Rafael Castro de
Saraiva, Rommel Dias
dc.contributor.author.fl_str_mv Castelo, Emanuel Elias Silva
dc.subject.por.fl_str_mv Combinatorial optimization
k-color shortest path
Valid inequalities
topic Combinatorial optimization
k-color shortest path
Valid inequalities
description Given a digraph D = (V,A), where all arcs (i, j) ∈ A have an associated cost d(i, j) ∈ R+ and a color c(i, j), a positive integer k, a source s, and a destination t, the k-Color Shortest Path Problem is an NP-Hard problem that consists in finding the shortest (s,t)-path in D while using at most k distinct colors. We propose valid inequalities for the problem that proved to strengthen the linear relaxation of an existing Integer Linear Programming formulation. An exponential set of valid inequalities defines a new formulation for the problem and is solved by using a branch-and-cut algorithm. We introduce more challenging instances of the problem and present numerical experiments for both benchmark and the new instances. Finally, we evaluate the individual and the collective use of the valid inequalities. Computational results for the proposed ideas and for existing solution approaches for the problem showed the effectiveness of the new inequalities in handling the new instances both in terms of execution times and improving their linear relaxed solutions.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-13T14:30:17Z
2023-07-13T14:30:17Z
2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CASTELO, Emanuel Elias Silva. Contributions to the k-color shortest path problem. 2023. 54 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2023.
http://www.repositorio.ufc.br/handle/riufc/73496
dc.identifier.dark.fl_str_mv ark:/83112/001300002pxfc
identifier_str_mv CASTELO, Emanuel Elias Silva. Contributions to the k-color shortest path problem. 2023. 54 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2023.
ark:/83112/001300002pxfc
url http://www.repositorio.ufc.br/handle/riufc/73496
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1834207804211068928