Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code

Bibliographic Details
Main Author: Ramos, Carlos Henrique Oliveira
Publication Date: 2019
Other Authors: Araújo, Fernanda Alves, Andrade, Paulo César de Resende
Format: Article
Language: eng
Source: Revista Semina: Ciências Exatas e Tecnológicas (Online)
Download full: https://ojs.uel.br/revistas/uel/index.php/semexatas/article/view/36405
Summary: The experimental statistic uses multiple comparison procedures (MCP) to verify if there is a difference between the treatments under analysis. However, the presence of unbalanced data and the cases of heterogeneity of variance negatively influence the performance of the most used tests. The dbayes and pbayes tests were previously implemented in the context of completely randomized designs by one of the authors. These tests are valid for cases where assumptions of variance analysis are met or not, with or without balancing. The objective of this article is to optimize the Bayes function, in R code, that allows the performance of these tests. To validate the optimization, it compared the optimized code with the previous code and used three real situations: one considering all the assumptions, the other two with unbalanced data and with different numbers of treatments. The optimized Bayes function allows the dbayes and pbayes tests to perform well under conditions of assumption and balancing. These tests can be used satisfactorily in situations of non-compliance with the assumptions. In cases of unbalanced data, with a small number of treatments, the dbayes test presents a result superior to the Tukey-Kramer test
id UEL-18_5d105e72a1250b7214ba8b51ec890e43
oai_identifier_str oai:ojs2.ojs.uel.br:article/36405
network_acronym_str UEL-18
network_name_str Revista Semina: Ciências Exatas e Tecnológicas (Online)
repository_id_str
spelling Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R CodeOtimização dos testes de comparações múltiplas bayesianos dbayes e pbayes em código RBayesian testsMCP. Analysis of VarianceCompletely Randomized DesignsTestes BayesianosPCMAnálise de VariânciaDelineamento Completamente Aleatorizado.Probabilidade e EstatísticaThe experimental statistic uses multiple comparison procedures (MCP) to verify if there is a difference between the treatments under analysis. However, the presence of unbalanced data and the cases of heterogeneity of variance negatively influence the performance of the most used tests. The dbayes and pbayes tests were previously implemented in the context of completely randomized designs by one of the authors. These tests are valid for cases where assumptions of variance analysis are met or not, with or without balancing. The objective of this article is to optimize the Bayes function, in R code, that allows the performance of these tests. To validate the optimization, it compared the optimized code with the previous code and used three real situations: one considering all the assumptions, the other two with unbalanced data and with different numbers of treatments. The optimized Bayes function allows the dbayes and pbayes tests to perform well under conditions of assumption and balancing. These tests can be used satisfactorily in situations of non-compliance with the assumptions. In cases of unbalanced data, with a small number of treatments, the dbayes test presents a result superior to the Tukey-Kramer testA estatística experimental utiliza procedimentos de comparações múltiplas (PCM) a fim de verificar se há diferença entre os tratamentos em análise. Entretanto, a presença de dados desbalanceados e casos de heterogeneidade de variâncias influencia negativamente o desempenho dos testes mais utilizados. Os testes dbayes e pbayes foram implementados anteriormente no contexto dos delineamentos inteiramente casualizados por um dos autores. Esses testes são válidos para casos em que as pressuposições da análise de variância são atendidas ou não, com ou sem balanceamento. O presente artigo tem por objetivo realizar uma otimização da função Bayes, em código R, que permite a realização destes testes. Para validar a otimização, comparou-se o código otimizado com o código anterior e utilizou três situações reais: uma atendendo a todas as pressuposições, as outras duas com dados desbalanceados e com número diferente de tratamentos. A função Bayes otimizada propicia que os testes dbayes e pbayes tenham bons resultados em condições de atendimento das pressuposições e balanceamento. Estes testes podem ser utilizados satisfatoriamente nas situações de não atendimento das pressuposições. Nos casos de dados desbalanceados, com um pequeno número de tratamentos, o teste dbayes apresenta resultado superior ao teste de Tukey-Kramer.State University of Londrina2019-06-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semexatas/article/view/3640510.5433/1679-0375.2019v40n1p63Semina: Ciências Exatas e Tecnológicas; Vol. 40 No. 1 (2019); 63-72Semina: Ciências Exatas e Tecnológicas; v. 40 n. 1 (2019); 63-721679-03751676-5451reponame:Revista Semina: Ciências Exatas e Tecnológicas (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semexatas/article/view/36405/25571Copyright (c) 2019 Semina Ciências Exatas e Tecnológicasinfo:eu-repo/semantics/openAccessRamos, Carlos Henrique OliveiraAraújo, Fernanda AlvesAndrade, Paulo César de Resende2019-06-27T13:39:27Zoai:ojs2.ojs.uel.br:article/36405Revistahttps://ojs.uel.br/revistas/uel/index.php/semexatas/indexPUBhttps://ojs.uel.br/revistas/uel/index.php/semexatas/oaiseminaexatas@uel.br || periodicosuel@uel.br1679-03751676-5451opendoar:2019-06-27T13:39:27Revista Semina: Ciências Exatas e Tecnológicas (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code
Otimização dos testes de comparações múltiplas bayesianos dbayes e pbayes em código R
title Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code
spellingShingle Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code
Ramos, Carlos Henrique Oliveira
Bayesian tests
MCP. Analysis of Variance
Completely Randomized Designs
Testes Bayesianos
PCM
Análise de Variância
Delineamento Completamente Aleatorizado.
Probabilidade e Estatística
title_short Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code
title_full Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code
title_fullStr Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code
title_full_unstemmed Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code
title_sort Optimization of Bayesian Multiple Comparison Tests dbayes and pbayes in R Code
author Ramos, Carlos Henrique Oliveira
author_facet Ramos, Carlos Henrique Oliveira
Araújo, Fernanda Alves
Andrade, Paulo César de Resende
author_role author
author2 Araújo, Fernanda Alves
Andrade, Paulo César de Resende
author2_role author
author
dc.contributor.author.fl_str_mv Ramos, Carlos Henrique Oliveira
Araújo, Fernanda Alves
Andrade, Paulo César de Resende
dc.subject.por.fl_str_mv Bayesian tests
MCP. Analysis of Variance
Completely Randomized Designs
Testes Bayesianos
PCM
Análise de Variância
Delineamento Completamente Aleatorizado.
Probabilidade e Estatística
topic Bayesian tests
MCP. Analysis of Variance
Completely Randomized Designs
Testes Bayesianos
PCM
Análise de Variância
Delineamento Completamente Aleatorizado.
Probabilidade e Estatística
description The experimental statistic uses multiple comparison procedures (MCP) to verify if there is a difference between the treatments under analysis. However, the presence of unbalanced data and the cases of heterogeneity of variance negatively influence the performance of the most used tests. The dbayes and pbayes tests were previously implemented in the context of completely randomized designs by one of the authors. These tests are valid for cases where assumptions of variance analysis are met or not, with or without balancing. The objective of this article is to optimize the Bayes function, in R code, that allows the performance of these tests. To validate the optimization, it compared the optimized code with the previous code and used three real situations: one considering all the assumptions, the other two with unbalanced data and with different numbers of treatments. The optimized Bayes function allows the dbayes and pbayes tests to perform well under conditions of assumption and balancing. These tests can be used satisfactorily in situations of non-compliance with the assumptions. In cases of unbalanced data, with a small number of treatments, the dbayes test presents a result superior to the Tukey-Kramer test
publishDate 2019
dc.date.none.fl_str_mv 2019-06-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semexatas/article/view/36405
10.5433/1679-0375.2019v40n1p63
url https://ojs.uel.br/revistas/uel/index.php/semexatas/article/view/36405
identifier_str_mv 10.5433/1679-0375.2019v40n1p63
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semexatas/article/view/36405/25571
dc.rights.driver.fl_str_mv Copyright (c) 2019 Semina Ciências Exatas e Tecnológicas
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Semina Ciências Exatas e Tecnológicas
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv State University of Londrina
publisher.none.fl_str_mv State University of Londrina
dc.source.none.fl_str_mv Semina: Ciências Exatas e Tecnológicas; Vol. 40 No. 1 (2019); 63-72
Semina: Ciências Exatas e Tecnológicas; v. 40 n. 1 (2019); 63-72
1679-0375
1676-5451
reponame:Revista Semina: Ciências Exatas e Tecnológicas (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Revista Semina: Ciências Exatas e Tecnológicas (Online)
collection Revista Semina: Ciências Exatas e Tecnológicas (Online)
repository.name.fl_str_mv Revista Semina: Ciências Exatas e Tecnológicas (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv seminaexatas@uel.br || periodicosuel@uel.br
_version_ 1841186546243338240